This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5502
  • Wer: 0.4042

Training and evaluation data

Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_mn.ipynb"

Test WER without LM wer = 58.2171 % cer = 16.0670 %

Test WER using wer = 31.3919 % cer = 10.2565 %

How to use eval.py

huggingface-cli login #login to huggingface for getting auth token to access the common voice v8
#running with LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test

# running without LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test --greedy

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 6.35 400 0.9380 0.7902
3.2674 12.7 800 0.5794 0.5309
0.7531 19.05 1200 0.5749 0.4815
0.5382 25.4 1600 0.5530 0.4447
0.4293 31.75 2000 0.5709 0.4237
0.4293 38.1 2400 0.5476 0.4059

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ayameRushia/wav2vec2-large-xls-r-300m-mn

Evaluation results