This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5502
- Wer: 0.4042
Training and evaluation data
Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_mn.ipynb"
Test WER without LM wer = 58.2171 % cer = 16.0670 %
Test WER using wer = 31.3919 % cer = 10.2565 %
How to use eval.py
huggingface-cli login #login to huggingface for getting auth token to access the common voice v8
#running with LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test
# running without LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test --greedy
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 6.35 | 400 | 0.9380 | 0.7902 |
3.2674 | 12.7 | 800 | 0.5794 | 0.5309 |
0.7531 | 19.05 | 1200 | 0.5749 | 0.4815 |
0.5382 | 25.4 | 1600 | 0.5530 | 0.4447 |
0.4293 | 31.75 | 2000 | 0.5709 | 0.4237 |
0.4293 | 38.1 | 2400 | 0.5476 | 0.4059 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train ayameRushia/wav2vec2-large-xls-r-300m-mn
Evaluation results
- Test WER using LM on Common Voice 8self-reported31.392
- Test CER using LM on Common Voice 8self-reported10.257
- Test WER on Robust Speech Event - Dev Dataself-reported65.260
- Test WER on Robust Speech Event - Test Dataself-reported63.090