File size: 3,468 Bytes
db0751c ed8904f db0751c ed8904f db0751c ea5af2c 0de4ae0 ea5af2c 9a17ef8 db0751c db8afb4 11e8511 db0751c 4eecfb0 454a43a 4eecfb0 454a43a 11e8511 454a43a 11e8511 4eecfb0 11e8511 4eecfb0 11e8511 4eecfb0 11e8511 4eecfb0 11e8511 4eecfb0 11e8511 4eecfb0 11e8511 4eecfb0 11e8511 4eecfb0 11e8511 db0751c ed8904f db0751c ed8904f db0751c 87a2e46 db0751c de95906 4c2f86c 252bc51 4c2f86c 252bc51 4c2f86c db0751c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
language:
- mn
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: wav2vec2-large-xls-r-300m-mn
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: mn
metrics:
- type: wer
value: 31.3919
name: Test WER using LM
- type: cer
value: 10.2565
name: Test CER using LM
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: mn
metrics:
- type: wer
value: 65.26
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: mn
metrics:
- type: wer
value: 63.09
name: Test WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5502
- Wer: 0.4042
## Training and evaluation data
Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_mn.ipynb"
Test WER without LM
wer = 58.2171 %
cer = 16.0670 %
Test WER using
wer = 31.3919 %
cer = 10.2565 %
How to use eval.py
```
huggingface-cli login #login to huggingface for getting auth token to access the common voice v8
#running with LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test
# running without LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test --greedy
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 6.35 | 400 | 0.9380 | 0.7902 |
| 3.2674 | 12.7 | 800 | 0.5794 | 0.5309 |
| 0.7531 | 19.05 | 1200 | 0.5749 | 0.4815 |
| 0.5382 | 25.4 | 1600 | 0.5530 | 0.4447 |
| 0.4293 | 31.75 | 2000 | 0.5709 | 0.4237 |
| 0.4293 | 38.1 | 2400 | 0.5476 | 0.4059 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|