File size: 3,468 Bytes
db0751c
ed8904f
 
db0751c
 
ed8904f
db0751c
ea5af2c
0de4ae0
ea5af2c
9a17ef8
db0751c
db8afb4
11e8511
db0751c
4eecfb0
454a43a
4eecfb0
454a43a
11e8511
454a43a
 
 
 
 
11e8511
4eecfb0
11e8511
 
4eecfb0
11e8511
4eecfb0
 
11e8511
4eecfb0
 
 
 
 
11e8511
4eecfb0
11e8511
4eecfb0
 
11e8511
4eecfb0
 
 
 
 
11e8511
4eecfb0
11e8511
db0751c
 
 
 
 
 
 
ed8904f
db0751c
ed8904f
 
db0751c
 
 
87a2e46
db0751c
de95906
 
 
 
 
 
 
 
 
4c2f86c
 
 
 
252bc51
4c2f86c
 
252bc51
4c2f86c
 
db0751c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
language:
- mn
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: wav2vec2-large-xls-r-300m-mn
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: mn
    metrics:
    - type: wer
      value: 31.3919
      name: Test WER using LM
    - type: cer
      value: 10.2565
      name: Test CER using LM
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: mn
    metrics:
    - type: wer
      value: 65.26
      name: Test WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: mn
    metrics:
    - type: wer
      value: 63.09
      name: Test WER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5502
- Wer: 0.4042

## Training and evaluation data

Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_mn.ipynb"


Test WER without LM
wer = 58.2171 %
cer = 16.0670 %

Test WER using 
wer = 31.3919 %
cer = 10.2565 %

How to use eval.py
```
huggingface-cli login #login to huggingface for getting auth token to access the common voice v8
#running with LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test

# running without LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test --greedy
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 6.35  | 400  | 0.9380          | 0.7902 |
| 3.2674        | 12.7  | 800  | 0.5794          | 0.5309 |
| 0.7531        | 19.05 | 1200 | 0.5749          | 0.4815 |
| 0.5382        | 25.4  | 1600 | 0.5530          | 0.4447 |
| 0.4293        | 31.75 | 2000 | 0.5709          | 0.4237 |
| 0.4293        | 38.1  | 2400 | 0.5476          | 0.4059 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0