lewtun's picture
lewtun HF staff
Add evaluation results on trec dataset
285afe8
|
raw
history blame
3.49 kB
metadata
language:
  - en
thumbnail: null
tags:
  - text-classification
license: mit
datasets:
  - trec
metrics: null
model-index:
  - name: aychang/bert-base-cased-trec-coarse
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: trec
          type: trec
          config: default
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.974
            verified: true
          - name: Precision Macro
            type: precision
            value: 0.9793164100816639
            verified: true
          - name: Precision Micro
            type: precision
            value: 0.974
            verified: true
          - name: Precision Weighted
            type: precision
            value: 0.9746805065928548
            verified: true
          - name: Recall Macro
            type: recall
            value: 0.9783617516169679
            verified: true
          - name: Recall Micro
            type: recall
            value: 0.974
            verified: true
          - name: Recall Weighted
            type: recall
            value: 0.974
            verified: true
          - name: F1 Macro
            type: f1
            value: 0.9783635353409951
            verified: true
          - name: F1 Micro
            type: f1
            value: 0.974
            verified: true
          - name: F1 Weighted
            type: f1
            value: 0.97377371266232
            verified: true
          - name: loss
            type: loss
            value: 0.13812002539634705
            verified: true

bert-base-cased trained on TREC 6-class task

Model description

A simple base BERT model trained on the "trec" dataset.

Intended uses & limitations

How to use

Transformers
# Load model and tokenizer
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Use pipeline
from transformers import pipeline

model_name = "aychang/bert-base-cased-trec-coarse"

nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name)

results = nlp(["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"])
AdaptNLP
from adaptnlp import EasySequenceClassifier

model_name = "aychang/bert-base-cased-trec-coarse"
texts = ["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"]

classifer = EasySequenceClassifier
results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2)

Limitations and bias

This is minimal language model trained on a benchmark dataset.

Training data

TREC https://huggingface.co/datasets/trec

Training procedure

Preprocessing, hardware used, hyperparameters...

Hardware

One V100

Hyperparameters and Training Args

from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir='./models',
    num_train_epochs=2,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    warmup_steps=500,
    weight_decay=0.01,
    evaluation_strategy="steps",
    logging_dir='./logs',
    save_steps=3000
)

Eval results

{'epoch': 2.0,
 'eval_accuracy': 0.974,
 'eval_f1': array([0.98181818, 0.94444444, 1.        , 0.99236641, 0.96995708,
        0.98159509]),
 'eval_loss': 0.138086199760437,
 'eval_precision': array([0.98540146, 0.98837209, 1.        , 0.98484848, 0.94166667,
        0.97560976]),
 'eval_recall': array([0.97826087, 0.90425532, 1.        , 1.        , 1.        ,
        0.98765432]),
 'eval_runtime': 1.6132,
 'eval_samples_per_second': 309.943}