autoevaluator
HF staff
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
fa53b10
language: | |
- en | |
license: mit | |
tags: | |
- text-classification | |
datasets: | |
- trec | |
model-index: | |
- name: aychang/distilbert-base-cased-trec-coarse | |
results: | |
- task: | |
type: text-classification | |
name: Text Classification | |
dataset: | |
name: trec | |
type: trec | |
config: default | |
split: test | |
metrics: | |
- type: accuracy | |
value: 0.97 | |
name: Accuracy | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGNmZTQ1Mjk3YTQ0NTdiZmY2NGM2NDM2Yzc2OTI4NGNiZDg4MmViN2I0ZGZiYWJlMTg1ZDU0MTc2ZTg1NjcwZiIsInZlcnNpb24iOjF9.4x_Ze9S5MbAeIHZ4p1EFmWev8RLkAIYWKqouAzYOxTNqdfFN0HnqULiM19EMP42v658vl_fR3-Ig0xG45DioCA | |
- type: precision | |
value: 0.9742915631870833 | |
name: Precision Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjA2MWVjMDc3MDYyY2M3NzY4NGNhY2JlNzJjMGQzZDUzZjE3ZWI1MjVmMzc4ODM2ZTQ4YmRhOTVkZDU0MzJiNiIsInZlcnNpb24iOjF9.EfmXJ6w5_7dK6ys03hpADP9h_sWuPAHgxpltUtCkJP4Ys_Gh8Ak4pGS149zt5AdP_zkvsWlXwAvx5BDMEoB2AA | |
- type: precision | |
value: 0.97 | |
name: Precision Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDVjOGFjM2RkMDMxZTFiMzE1ZDM4OTRjMzkwOWE2NTJmMmUwMDdiZDg5ZjExYmFmZjg2Y2Y5NzcxZWVkODkwZSIsInZlcnNpb24iOjF9.BtO7DqJsUhSXE-_tJZJOPPd421VmZ3KR9-KkrhJkLNenoV2Xd6Pu6i5y6HZQhFB-9WfEhU9cCsIPQ1ioZ7dyDA | |
- type: precision | |
value: 0.9699546283251607 | |
name: Precision Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGQ0Mzc2MTE2YjkwNGY1MDEzNWQwYmNlZDMzZjBmNWM0ODExYjM1OTQyZGJkNjI2OTA5MDczZjFmOGM5MmMzMyIsInZlcnNpb24iOjF9.fGi2qNpOjWd1ci3p_E1p80nOqabiKiQqpQIxtk5aWxe_Nzqh3XiOCBF8vswCRvX8qTKdCc2ZEJ4s8dZMeltfCA | |
- type: recall | |
value: 0.972626762268805 | |
name: Recall Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjQwMWZiYjIyMGVhN2M1ZDE5M2EzZmQ1ODRlYzE0MzJhZmU3ZTM1MmIyNTg5ZjBlMDcyMmQ0NmYzZjFmMmM4NSIsInZlcnNpb24iOjF9.SYDxsRw0xoQuQhei0YBdUbBxG891gqLafVFLdPMCJtQIktqCTrPW0sMKtis7GA-FEbNQVu8lp92znvlryNiFCw | |
- type: recall | |
value: 0.97 | |
name: Recall Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjQ0MjczYjFhZDdiMjdkMWVlZTAzYWU0ODVhNjkxN2I1N2Y1Y2IyOTNlYWQxM2UxODIyNDZhZDM3MWIwMTgzZCIsInZlcnNpb24iOjF9.C5cfDTz_H4Y7nEO4Eq_XFy92CSbo3IBuL5n8wBKkTuB6hSgctTHOdOJzV8gWyMJ9gRcNqxp_yVU4BEB_I_0KAA | |
- type: recall | |
value: 0.97 | |
name: Recall Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDZmYWM3OWExZWI1ZjRiZjczYWQwOWI5NWQzNDNkODcyMjBhMmVkYjY0MGZjYzlhNWQ0Y2MyMjc3OWEyZjY4NCIsInZlcnNpb24iOjF9.65WM5ihNfbKOCNZ6apX7iVAC2Ge_cwz9Xwa5oJHFq3Ci97eBFqK-qtADdB_SFRcSQUoNodaBeIhNfe0hVddxCA | |
- type: f1 | |
value: 0.9729834427867218 | |
name: F1 Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWQyZGZmYjU4NjE4M2YzMTUxOWVkYjU0YTFmYzE3MmQ2NjhmNDY1MGRmNGQ1MWZjYjM1Mzg5Y2RmNTk5YmZiMSIsInZlcnNpb24iOjF9.WIF-fmV0SZ6-lcg3Rz6TjbVl7nLvy_ftDi8PPhDIP1V61jgR1AcjLFeEgeZLxSFMdmU9yqG2DWYubF0luK0jCg | |
- type: f1 | |
value: 0.97 | |
name: F1 Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDM0NDY0YzI2ZTBjYWVmZmVkOTI4ODkzM2RhNWM2ZjkwYTU3N2FjNjA4NjUwYWVjODNhMGEwMzdhYmE2YmIwYyIsInZlcnNpb24iOjF9.sihEhcsOeg8dvpuGgC-KCp1PsRNyguAif2uTBv5ELtRnM5KmMaHzRqpdpdc88Dj_DeuY6Y6qPQJt_dGk2q1rDQ | |
- type: f1 | |
value: 0.9694196751375908 | |
name: F1 Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTQ5ZjdiM2NiNDNkZTY5ZjNjNWUzZmI1MzgwMjhhNDEzMTEzZjFiNDhmZDllYmI0NjIwYjY0ZjcxM2M0ODE3NSIsInZlcnNpb24iOjF9.x4oR_PL0ALHYl-s4S7cPNPm4asSX3s3h30m-TKe7wpyZs0x6jwOqF-Tb1kgd4IMLl23pzsezmh72e_PmBFpRCg | |
- type: loss | |
value: 0.14272506535053253 | |
name: loss | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODU3NGFiMzIxYWI4NzYxMzUxZGE5ZTZkYTlkN2U5MTI1NzA5NTBiNGM3Y2Q5YmVmZjU0MmU5MjJlZThkZTllMCIsInZlcnNpb24iOjF9.3QeWbECpJ0MHV5gC0_ES6PpwplLsCHPKuToErB1MSG69xNWVyMjKu1-1YEWZOU6dGfwKGh_HvwucY5kC9qwWBQ | |
# TREC 6-class Task: distilbert-base-cased | |
## Model description | |
A simple base distilBERT model trained on the "trec" dataset. | |
## Intended uses & limitations | |
#### How to use | |
##### Transformers | |
```python | |
# Load model and tokenizer | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Use pipeline | |
from transformers import pipeline | |
model_name = "aychang/distilbert-base-cased-trec-coarse" | |
nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name) | |
results = nlp(["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"]) | |
``` | |
##### AdaptNLP | |
```python | |
from adaptnlp import EasySequenceClassifier | |
model_name = "aychang/distilbert-base-cased-trec-coarse" | |
texts = ["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"] | |
classifer = EasySequenceClassifier | |
results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2) | |
``` | |
#### Limitations and bias | |
This is minimal language model trained on a benchmark dataset. | |
## Training data | |
TREC https://huggingface.co/datasets/trec | |
## Training procedure | |
Preprocessing, hardware used, hyperparameters... | |
#### Hardware | |
One V100 | |
#### Hyperparameters and Training Args | |
```python | |
from transformers import TrainingArguments | |
training_args = TrainingArguments( | |
output_dir='./models', | |
overwrite_output_dir=False, | |
num_train_epochs=2, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=16, | |
warmup_steps=500, | |
weight_decay=0.01, | |
evaluation_strategy="steps", | |
logging_dir='./logs', | |
fp16=False, | |
eval_steps=500, | |
save_steps=300000 | |
) | |
``` | |
## Eval results | |
``` | |
{'epoch': 2.0, | |
'eval_accuracy': 0.97, | |
'eval_f1': array([0.98220641, 0.91620112, 1. , 0.97709924, 0.98678414, | |
0.97560976]), | |
'eval_loss': 0.14275787770748138, | |
'eval_precision': array([0.96503497, 0.96470588, 1. , 0.96969697, 0.98245614, | |
0.96385542]), | |
'eval_recall': array([1. , 0.87234043, 1. , 0.98461538, 0.99115044, | |
0.98765432]), | |
'eval_runtime': 0.9731, | |
'eval_samples_per_second': 513.798} | |
``` | |