autoevaluator's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
fa53b10
|
raw
history blame
6.41 kB
---
language:
- en
license: mit
tags:
- text-classification
datasets:
- trec
model-index:
- name: aychang/distilbert-base-cased-trec-coarse
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: trec
type: trec
config: default
split: test
metrics:
- type: accuracy
value: 0.97
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGNmZTQ1Mjk3YTQ0NTdiZmY2NGM2NDM2Yzc2OTI4NGNiZDg4MmViN2I0ZGZiYWJlMTg1ZDU0MTc2ZTg1NjcwZiIsInZlcnNpb24iOjF9.4x_Ze9S5MbAeIHZ4p1EFmWev8RLkAIYWKqouAzYOxTNqdfFN0HnqULiM19EMP42v658vl_fR3-Ig0xG45DioCA
- type: precision
value: 0.9742915631870833
name: Precision Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjA2MWVjMDc3MDYyY2M3NzY4NGNhY2JlNzJjMGQzZDUzZjE3ZWI1MjVmMzc4ODM2ZTQ4YmRhOTVkZDU0MzJiNiIsInZlcnNpb24iOjF9.EfmXJ6w5_7dK6ys03hpADP9h_sWuPAHgxpltUtCkJP4Ys_Gh8Ak4pGS149zt5AdP_zkvsWlXwAvx5BDMEoB2AA
- type: precision
value: 0.97
name: Precision Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDVjOGFjM2RkMDMxZTFiMzE1ZDM4OTRjMzkwOWE2NTJmMmUwMDdiZDg5ZjExYmFmZjg2Y2Y5NzcxZWVkODkwZSIsInZlcnNpb24iOjF9.BtO7DqJsUhSXE-_tJZJOPPd421VmZ3KR9-KkrhJkLNenoV2Xd6Pu6i5y6HZQhFB-9WfEhU9cCsIPQ1ioZ7dyDA
- type: precision
value: 0.9699546283251607
name: Precision Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGQ0Mzc2MTE2YjkwNGY1MDEzNWQwYmNlZDMzZjBmNWM0ODExYjM1OTQyZGJkNjI2OTA5MDczZjFmOGM5MmMzMyIsInZlcnNpb24iOjF9.fGi2qNpOjWd1ci3p_E1p80nOqabiKiQqpQIxtk5aWxe_Nzqh3XiOCBF8vswCRvX8qTKdCc2ZEJ4s8dZMeltfCA
- type: recall
value: 0.972626762268805
name: Recall Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjQwMWZiYjIyMGVhN2M1ZDE5M2EzZmQ1ODRlYzE0MzJhZmU3ZTM1MmIyNTg5ZjBlMDcyMmQ0NmYzZjFmMmM4NSIsInZlcnNpb24iOjF9.SYDxsRw0xoQuQhei0YBdUbBxG891gqLafVFLdPMCJtQIktqCTrPW0sMKtis7GA-FEbNQVu8lp92znvlryNiFCw
- type: recall
value: 0.97
name: Recall Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjQ0MjczYjFhZDdiMjdkMWVlZTAzYWU0ODVhNjkxN2I1N2Y1Y2IyOTNlYWQxM2UxODIyNDZhZDM3MWIwMTgzZCIsInZlcnNpb24iOjF9.C5cfDTz_H4Y7nEO4Eq_XFy92CSbo3IBuL5n8wBKkTuB6hSgctTHOdOJzV8gWyMJ9gRcNqxp_yVU4BEB_I_0KAA
- type: recall
value: 0.97
name: Recall Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDZmYWM3OWExZWI1ZjRiZjczYWQwOWI5NWQzNDNkODcyMjBhMmVkYjY0MGZjYzlhNWQ0Y2MyMjc3OWEyZjY4NCIsInZlcnNpb24iOjF9.65WM5ihNfbKOCNZ6apX7iVAC2Ge_cwz9Xwa5oJHFq3Ci97eBFqK-qtADdB_SFRcSQUoNodaBeIhNfe0hVddxCA
- type: f1
value: 0.9729834427867218
name: F1 Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWQyZGZmYjU4NjE4M2YzMTUxOWVkYjU0YTFmYzE3MmQ2NjhmNDY1MGRmNGQ1MWZjYjM1Mzg5Y2RmNTk5YmZiMSIsInZlcnNpb24iOjF9.WIF-fmV0SZ6-lcg3Rz6TjbVl7nLvy_ftDi8PPhDIP1V61jgR1AcjLFeEgeZLxSFMdmU9yqG2DWYubF0luK0jCg
- type: f1
value: 0.97
name: F1 Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDM0NDY0YzI2ZTBjYWVmZmVkOTI4ODkzM2RhNWM2ZjkwYTU3N2FjNjA4NjUwYWVjODNhMGEwMzdhYmE2YmIwYyIsInZlcnNpb24iOjF9.sihEhcsOeg8dvpuGgC-KCp1PsRNyguAif2uTBv5ELtRnM5KmMaHzRqpdpdc88Dj_DeuY6Y6qPQJt_dGk2q1rDQ
- type: f1
value: 0.9694196751375908
name: F1 Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTQ5ZjdiM2NiNDNkZTY5ZjNjNWUzZmI1MzgwMjhhNDEzMTEzZjFiNDhmZDllYmI0NjIwYjY0ZjcxM2M0ODE3NSIsInZlcnNpb24iOjF9.x4oR_PL0ALHYl-s4S7cPNPm4asSX3s3h30m-TKe7wpyZs0x6jwOqF-Tb1kgd4IMLl23pzsezmh72e_PmBFpRCg
- type: loss
value: 0.14272506535053253
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODU3NGFiMzIxYWI4NzYxMzUxZGE5ZTZkYTlkN2U5MTI1NzA5NTBiNGM3Y2Q5YmVmZjU0MmU5MjJlZThkZTllMCIsInZlcnNpb24iOjF9.3QeWbECpJ0MHV5gC0_ES6PpwplLsCHPKuToErB1MSG69xNWVyMjKu1-1YEWZOU6dGfwKGh_HvwucY5kC9qwWBQ
---
# TREC 6-class Task: distilbert-base-cased
## Model description
A simple base distilBERT model trained on the "trec" dataset.
## Intended uses & limitations
#### How to use
##### Transformers
```python
# Load model and tokenizer
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Use pipeline
from transformers import pipeline
model_name = "aychang/distilbert-base-cased-trec-coarse"
nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name)
results = nlp(["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"])
```
##### AdaptNLP
```python
from adaptnlp import EasySequenceClassifier
model_name = "aychang/distilbert-base-cased-trec-coarse"
texts = ["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"]
classifer = EasySequenceClassifier
results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2)
```
#### Limitations and bias
This is minimal language model trained on a benchmark dataset.
## Training data
TREC https://huggingface.co/datasets/trec
## Training procedure
Preprocessing, hardware used, hyperparameters...
#### Hardware
One V100
#### Hyperparameters and Training Args
```python
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir='./models',
overwrite_output_dir=False,
num_train_epochs=2,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
evaluation_strategy="steps",
logging_dir='./logs',
fp16=False,
eval_steps=500,
save_steps=300000
)
```
## Eval results
```
{'epoch': 2.0,
'eval_accuracy': 0.97,
'eval_f1': array([0.98220641, 0.91620112, 1. , 0.97709924, 0.98678414,
0.97560976]),
'eval_loss': 0.14275787770748138,
'eval_precision': array([0.96503497, 0.96470588, 1. , 0.96969697, 0.98245614,
0.96385542]),
'eval_recall': array([1. , 0.87234043, 1. , 0.98461538, 0.99115044,
0.98765432]),
'eval_runtime': 0.9731,
'eval_samples_per_second': 513.798}
```