IMDB Sentiment Task: roberta-base
Model description
A simple base roBERTa model trained on the "imdb" dataset.
Intended uses & limitations
How to use
Transformers
# Load model and tokenizer
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Use pipeline
from transformers import pipeline
model_name = "aychang/roberta-base-imdb"
nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name)
results = nlp(["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."])
AdaptNLP
from adaptnlp import EasySequenceClassifier
model_name = "aychang/roberta-base-imdb"
texts = ["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."]
classifer = EasySequenceClassifier
results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2)
Limitations and bias
This is minimal language model trained on a benchmark dataset.
Training data
IMDB https://huggingface.co/datasets/imdb
Training procedure
Hardware
One V100
Hyperparameters and Training Args
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir='./models',
overwrite_output_dir=False,
num_train_epochs=2,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
evaluation_strategy="steps",
logging_dir='./logs',
fp16=False,
eval_steps=800,
save_steps=300000
)
Eval results
{'epoch': 2.0,
'eval_accuracy': 0.94668,
'eval_f1': array([0.94603457, 0.94731017]),
'eval_loss': 0.2578844428062439,
'eval_precision': array([0.95762642, 0.93624502]),
'eval_recall': array([0.93472, 0.95864]),
'eval_runtime': 244.7522,
'eval_samples_per_second': 102.144}
- Downloads last month
- 395
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.