|
--- |
|
license: apache-2.0 |
|
library_name: transformers |
|
--- |
|
|
|
|
|
|
|
|
|
|
|
<style> |
|
body { |
|
font-family: Arial, sans-serif; |
|
line-height: 1.6; |
|
margin: 0; |
|
padding: 20px; |
|
background-color: #f4f4f4; |
|
} |
|
.model-description { |
|
background: #fff; |
|
border-radius: 8px; |
|
padding: 20px; |
|
box-shadow: 0 0 10px rgba(0,0,0,0.1); |
|
max-width: 800px; |
|
margin: auto; |
|
} |
|
.model-description h2 { |
|
margin-top: 0; |
|
color: #333; |
|
} |
|
.model-description p { |
|
margin: 0 0 10px; |
|
color: #666; |
|
} |
|
body { |
|
font-family: 'Arial', sans-serif; |
|
line-height: 1.6; |
|
margin: 0; |
|
padding: 20px; |
|
background-color: #f4f4f4; |
|
} |
|
|
|
.model-description { |
|
background: #ffffff; |
|
border-radius: 8px; |
|
padding: 20px; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); |
|
max-width: 800px; |
|
margin: 20px auto; |
|
} |
|
|
|
.code-container { |
|
background: #1e1e1e; |
|
color: #dcdcdc; |
|
border-radius: 8px; |
|
padding: 20px; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); |
|
max-width: 800px; |
|
margin: 20px auto; |
|
overflow-x: auto; |
|
font-family: 'Courier New', Courier, monospace; |
|
font-size: 16px; |
|
line-height: 1.4; |
|
} |
|
|
|
code { |
|
display: block; |
|
white-space: pre-wrap; |
|
word-break: break-word; |
|
} |
|
|
|
code::before { |
|
content: " "; |
|
display: block; |
|
margin: 0 -20px; |
|
padding: 10px; |
|
background: #282c34; |
|
border-radius: 8px 8px 0 0; |
|
} |
|
|
|
code::after { |
|
content: " "; |
|
display: block; |
|
margin: 10px -20px; |
|
padding: 10px; |
|
background: #282c34; |
|
border-radius: 0 0 8px 8px; |
|
} |
|
body { |
|
font-family: 'Arial', sans-serif; |
|
line-height: 1.6; |
|
margin: 0; |
|
padding: 20px; |
|
background-color: #f4f4f4; |
|
} |
|
|
|
.code-container { |
|
background: #1e1e1e; |
|
color: #dcdcdc; |
|
border-radius: 8px; |
|
padding: 20px; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); |
|
max-width: 800px; |
|
margin: 20px auto; |
|
overflow-x: auto; |
|
font-family: 'Courier New', Courier, monospace; |
|
font-size: 16px; |
|
line-height: 1.4; |
|
} |
|
|
|
pre { |
|
margin: 0; |
|
} |
|
|
|
code { |
|
display: block; |
|
white-space: pre-wrap; |
|
word-break: break-word; |
|
} |
|
</style> |
|
<body> |
|
|
|
<div class="model-description"> |
|
<h2>Enhanced Model Features</h2> |
|
<p><strong>Adaptability:</strong> Adjusts to diverse contexts and user needs, ensuring relevant and precise interactions.</p> |
|
<p><strong>Contextual Intelligence:</strong> Provides contextually aware responses, improving engagement and interaction quality.</p> |
|
<p><strong>Advanced Algorithms:</strong> Employs cutting-edge algorithms for sophisticated and intelligent responses.</p> |
|
<p><strong>User Experience:</strong> Designed with a focus on seamless interaction, offering an intuitive and refined user experience.</p> |
|
</div> |
|
|
|
|
|
<body> |
|
<div class="code-container"> |
|
<pre><code> |
|
from transformers import BartTokenizer, BartForConditionalGeneration |
|
from datasets import load_dataset |
|
|
|
# Load pre-trained BART model for summarization |
|
tokenizer = BartTokenizer.from_pretrained('ayjays132/EnhancerModel') |
|
model = BartForConditionalGeneration.from_pretrained('ayjays132/EnhancerModel') |
|
|
|
# Load dataset |
|
dataset = load_dataset("cnn_dailymail", "3.0.0") |
|
|
|
# Function to generate summary |
|
def summarize(text): |
|
inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) |
|
summary_ids = model.generate(inputs['input_ids'], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) |
|
return tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
|
|
# Debugging: Print the type and content of the first example |
|
print("Type of dataset['test']:", type(dataset['test'])) |
|
print("Type of the first element in dataset['test']:", type(dataset['test'][0])) |
|
print("Content of the first element in dataset['test']:", dataset['test'][0]) |
|
|
|
# Test the model on a few examples |
|
for example in dataset['test'][:5]: |
|
try: |
|
# If the example is a string, then it's likely that 'dataset['test']' is not loaded as expected |
|
if isinstance(example, str): |
|
print(f"Article: {example}\n") |
|
print(f"Summary: {summarize(example)}\n") |
|
else: |
|
# Access the 'article' field if the example is a dictionary |
|
article = example.get('article', None) |
|
if article: |
|
print(f"Article: {article}\n") |
|
print(f"Summary: {summarize(article)}\n") |
|
else: |
|
print("No 'article' field found in this example.") |
|
except Exception as e: |
|
print(f"Error processing example: {e}") |
|
</code></pre> |
|
</div> |
|
</body> |