label_map = {0: 'sadness', 1: 'joy', 2: 'love', 3: 'anger', 4: 'fear', 5: 'surprise'}
final_training_args = TrainingArguments(
output_dir=outputs_dir,
per_device_train_batch_size=32,
num_train_epochs=3,
weight_decay=0.01,
learning_rate=3e-6,
warmup_steps=700,
lr_scheduler_type="cosine",
eval_strategy="steps",
eval_steps=100,
save_steps=100,
save_strategy="steps",
logging_dir=logs_dir,
logging_steps=100,
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
# report_to="none",
fp16=True,
disable_tqdm=False,
max_grad_norm=10.2
)
- Downloads last month
- 0
Model tree for azzenn4/ModernBERT-6_Multiclass_Emotion
Base model
answerdotai/ModernBERT-base