b07611031's picture
End of training
84291c0 verified
metadata
license: apache-2.0
base_model: microsoft/cvt-21-384-22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: cvt-21-384-22k-finetuned-PinnatelyCompound
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9955357142857143

cvt-21-384-22k-finetuned-PinnatelyCompound

This model is a fine-tuned version of microsoft/cvt-21-384-22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0064
  • Accuracy: 0.9955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 40
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 23 0.2918 0.8973
No log 2.0 46 0.1656 0.9330
No log 3.0 69 0.0529 0.9821
No log 4.0 92 0.0144 0.9955
No log 5.0 115 0.0266 0.9911
No log 6.0 138 0.0244 0.9955
No log 7.0 161 0.0144 0.9955
No log 8.0 184 0.0154 0.9955
No log 9.0 207 0.0188 0.9911
No log 10.0 230 0.0094 0.9955
No log 11.0 253 0.0055 1.0
No log 12.0 276 0.0026 1.0
No log 13.0 299 0.0057 1.0
No log 14.0 322 0.0079 0.9955
No log 15.0 345 0.0026 1.0
No log 16.0 368 0.0017 1.0
No log 17.0 391 0.0044 0.9955
No log 18.0 414 0.0038 1.0
No log 19.0 437 0.0120 0.9911
No log 20.0 460 0.0005 1.0
No log 21.0 483 0.0019 1.0
0.2553 22.0 506 0.0020 1.0
0.2553 23.0 529 0.0026 1.0
0.2553 24.0 552 0.0053 0.9955
0.2553 25.0 575 0.0009 1.0
0.2553 26.0 598 0.0008 1.0
0.2553 27.0 621 0.0016 1.0
0.2553 28.0 644 0.0010 1.0
0.2553 29.0 667 0.0008 1.0
0.2553 30.0 690 0.0064 0.9955

Framework versions

  • Transformers 4.38.1
  • Pytorch 1.10.0+cu111
  • Datasets 2.17.1
  • Tokenizers 0.15.2