ADL_Llama / README.md
b09501048's picture
Model save
48d61b1 verified
---
base_model: yentinglin/Llama-3-Taiwan-8B-Instruct
library_name: peft
license: llama3
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: ADL_Llama
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/djengo890-national-taiwan-university/ADL_Llama/runs/d7j4fkwy)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/djengo890-national-taiwan-university/ADL_Llama/runs/d7j4fkwy)
# ADL_Llama
This model is a fine-tuned version of [yentinglin/Llama-3-Taiwan-8B-Instruct](https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 3000
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1