Badr Abdullah
Model save
f596ddc verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: xls-r-300-cv17-polish-adap-cs
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: pl
          split: validation
          args: pl
        metrics:
          - name: Wer
            type: wer
            value: 0.3181674482322567

Visualize in Weights & Biases

xls-r-300-cv17-polish-adap-cs

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4585
  • Wer: 0.3182
  • Cer: 0.0713

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.5986 1.6 100 3.9654 0.9986 0.9660
3.2886 3.2 200 3.4889 1.0 1.0
3.1683 4.8 300 3.1937 0.9946 0.9735
2.7362 6.4 400 2.6853 1.0 0.8424
0.6269 8.0 500 0.5183 0.5745 0.1381
0.2661 9.6 600 0.4218 0.4551 0.1048
0.1646 11.2 700 0.4160 0.4211 0.0985
0.1197 12.8 800 0.4793 0.4578 0.1072
0.1925 14.4 900 0.4402 0.4283 0.0969
0.1132 16.0 1000 0.4253 0.3909 0.0906
0.0851 17.6 1100 0.4609 0.3951 0.0921
0.0799 19.2 1200 0.4453 0.3944 0.0907
0.0657 20.8 1300 0.4681 0.3846 0.0887
0.1188 22.4 1400 0.4575 0.3785 0.0873
0.1088 24.0 1500 0.4649 0.3824 0.0882
0.0698 25.6 1600 0.4496 0.3611 0.0817
0.0575 27.2 1700 0.4459 0.3585 0.0822
0.0705 28.8 1800 0.4542 0.3608 0.0820
0.0524 30.4 1900 0.4785 0.3549 0.0814
0.0338 32.0 2000 0.4566 0.3521 0.0801
0.0357 33.6 2100 0.4597 0.3472 0.0783
0.0477 35.2 2200 0.4626 0.3451 0.0788
0.0478 36.8 2300 0.4730 0.3375 0.0765
0.0568 38.4 2400 0.4713 0.3333 0.0749
0.0217 40.0 2500 0.4701 0.3324 0.0755
0.0404 41.6 2600 0.4585 0.3278 0.0740
0.0118 43.2 2700 0.4656 0.3259 0.0736
0.0374 44.8 2800 0.4625 0.3249 0.0731
0.0417 46.4 2900 0.4599 0.3206 0.0721
0.0378 48.0 3000 0.4614 0.3195 0.0717
0.0381 49.6 3100 0.4585 0.3182 0.0713

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1