File size: 7,697 Bytes
13a71b6
6736912
 
13a71b6
 
 
 
 
 
6736912
13a71b6
 
 
 
 
 
 
bc68b74
 
 
13a71b6
bc68b74
13a71b6
 
 
 
 
bc68b74
13a71b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc68b74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a71b6
 
 
 
 
 
bc68b74
 
 
13a71b6
 
 
bc68b74
13a71b6
 
 
bc68b74
13a71b6
 
 
 
 
bc68b74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a71b6
 
 
bc68b74
13a71b6
 
 
 
 
bc68b74
13a71b6
 
 
 
 
 
bc68b74
 
 
13a71b6
 
 
 
 
 
 
 
 
 
 
 
 
6736912
13a71b6
 
 
6736912
13a71b6
 
 
bc68b74
13a71b6
 
 
 
 
 
 
 
bc68b74
 
 
 
 
13a71b6
 
 
 
 
 
 
 
 
 
 
 
 
6736912
 
 
 
13a71b6
 
 
b66c978
 
13a71b6
 
 
 
bc68b74
13a71b6
 
 
 
 
 
 
 
 
 
 
bc68b74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
library_name: transformers, peft, torch
tags: [asr, whisper, finetune, atc, aircraft, communications, english]
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

[SUMMARY HERE]

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Jesse Arzate
- **Model type:** Sequence-to-Sequence (Seq2Seq) Transformer-based model
- **Language(s) (NLP):** English
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** Whisper ASR: distil-large-v3

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/Vaibhavs10/fast-whisper-finetuning

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model. 
```python
from transformers import (
    AutomaticSpeechRecognitionPipeline,
    WhisperForConditionalGeneration,
    WhisperTokenizer,
    WhisperProcessor,
)
from peft import PeftModel, PeftConfig


peft_model_id = "baileyarzate/whisper-distil-large-v3-atc-english" # huggingface model path
language = "en"
task = "transcribe"
device = 'cuda'
peft_config = PeftConfig.from_pretrained(peft_model_id)
model = WhisperForConditionalGeneration.from_pretrained(
    peft_config.base_model_name_or_path, device_map="cuda"
).to(device)

model = PeftModel.from_pretrained(model, peft_model_id).to(device)
tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
feature_extractor = processor.feature_extractor
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
model.config.use_cache = True

def transcribe(audio):
    with torch.cuda.amp.autocast():
        text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"]
    return text
    
transcriptions_finetuned = []
for i in tqdm(range(len(df_subset))):
    # When you only have audio file path
    #transcriptions_finetuned.append(transcribe(librosa.load(df["path"][i], sr = 16000, offset = df["start"][i], duration = df["stop"][i] - df["start"][i])[0])) #,model
    # When you have audio array, saves time
    transcriptions_finetuned.append(transcribe(df_subset['array'].iloc[i]))
transcriptions_finetuned = pd.DataFrame(transcriptions_finetuned, columns=['transcription_finetuned'])
df_subset = df_subset.reset_index().drop(columns=['index'])
df_subset = pd.concat([df_subset, transcriptions_finetuned], axis=1)
```

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
Dataset: ATC audio recordings from actual flight operations.
Size: ~250 hours of annotated data.

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
Modeled the procedure after: https://github.com/Vaibhavs10/fast-whisper-finetuning

#### Preprocessing [optional]

Preprocessing: Striped leading and trailing whitespaces from transcript sentences. Removed any sentences containing the phrase "UNINTELLIGIBLE" to filter out unclear or garbled speech. Removed filler words such as "ah" or "uh". 


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
```python 
training_args = Seq2SeqTrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=2, 
    learning_rate=5e-4, 
    warmup_steps=100,
    num_train_epochs=3,
    fp16=True,
    per_device_eval_batch_size=4,
    generation_max_length=128,
    logging_steps=100,
    save_steps=500,
    save_total_limit=3,
    remove_unused_columns=False,  # required as the PeftModel forward doesn't have the signature of the wrapped model's forward
    label_names=["labels"],  # same reason as above
)
```
#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
Inference time is about 2 samples per second with an RTX A2000.


## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->
Final training loss: 0.103

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->
Dataset: ATC audio recordings from actual flight operations.
Size: ~250 hours of annotated data.
Randomly sampled 20% of the data with seed = 42.

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

Word Error Rate, Normalized Word Error Rate

### Results

Mean WER for 500 test samples: 0.145 with 95% confidence interval: (0.123, 0.167)

#### Summary

[IN PROGRESS]


## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** RTX A2000
- **Hours used:** 24
- **Cloud Provider:** Private Infrustructure
- **Compute Region:** Southern California
- **Carbon Emitted:** 1.57 kg

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

- **CPU**: AMD EPYC 7313P 16-Core Processor 3.00 GHz
- **GPU**: NVIDIA RTX A2000
- **vRAM**: 6GB
- **RAM**: 128GB

#### Software

- **OS**: Windows 11 Enterprise - 21H2
- **Python**: Python 3.10.14

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
[IN PROGRESS]

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Model Card Contact

Jesse Arzate: [email protected]