File size: 7,697 Bytes
13a71b6 6736912 13a71b6 6736912 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 6736912 13a71b6 6736912 13a71b6 bc68b74 13a71b6 bc68b74 13a71b6 6736912 13a71b6 b66c978 13a71b6 bc68b74 13a71b6 bc68b74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
library_name: transformers, peft, torch
tags: [asr, whisper, finetune, atc, aircraft, communications, english]
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
[SUMMARY HERE]
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Jesse Arzate
- **Model type:** Sequence-to-Sequence (Seq2Seq) Transformer-based model
- **Language(s) (NLP):** English
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** Whisper ASR: distil-large-v3
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/Vaibhavs10/fast-whisper-finetuning
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import (
AutomaticSpeechRecognitionPipeline,
WhisperForConditionalGeneration,
WhisperTokenizer,
WhisperProcessor,
)
from peft import PeftModel, PeftConfig
peft_model_id = "baileyarzate/whisper-distil-large-v3-atc-english" # huggingface model path
language = "en"
task = "transcribe"
device = 'cuda'
peft_config = PeftConfig.from_pretrained(peft_model_id)
model = WhisperForConditionalGeneration.from_pretrained(
peft_config.base_model_name_or_path, device_map="cuda"
).to(device)
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
feature_extractor = processor.feature_extractor
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
model.config.use_cache = True
def transcribe(audio):
with torch.cuda.amp.autocast():
text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"]
return text
transcriptions_finetuned = []
for i in tqdm(range(len(df_subset))):
# When you only have audio file path
#transcriptions_finetuned.append(transcribe(librosa.load(df["path"][i], sr = 16000, offset = df["start"][i], duration = df["stop"][i] - df["start"][i])[0])) #,model
# When you have audio array, saves time
transcriptions_finetuned.append(transcribe(df_subset['array'].iloc[i]))
transcriptions_finetuned = pd.DataFrame(transcriptions_finetuned, columns=['transcription_finetuned'])
df_subset = df_subset.reset_index().drop(columns=['index'])
df_subset = pd.concat([df_subset, transcriptions_finetuned], axis=1)
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
Dataset: ATC audio recordings from actual flight operations.
Size: ~250 hours of annotated data.
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
Modeled the procedure after: https://github.com/Vaibhavs10/fast-whisper-finetuning
#### Preprocessing [optional]
Preprocessing: Striped leading and trailing whitespaces from transcript sentences. Removed any sentences containing the phrase "UNINTELLIGIBLE" to filter out unclear or garbled speech. Removed filler words such as "ah" or "uh".
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
```python
training_args = Seq2SeqTrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=2,
learning_rate=5e-4,
warmup_steps=100,
num_train_epochs=3,
fp16=True,
per_device_eval_batch_size=4,
generation_max_length=128,
logging_steps=100,
save_steps=500,
save_total_limit=3,
remove_unused_columns=False, # required as the PeftModel forward doesn't have the signature of the wrapped model's forward
label_names=["labels"], # same reason as above
)
```
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
Inference time is about 2 samples per second with an RTX A2000.
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
Final training loss: 0.103
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
Dataset: ATC audio recordings from actual flight operations.
Size: ~250 hours of annotated data.
Randomly sampled 20% of the data with seed = 42.
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
Word Error Rate, Normalized Word Error Rate
### Results
Mean WER for 500 test samples: 0.145 with 95% confidence interval: (0.123, 0.167)
#### Summary
[IN PROGRESS]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** RTX A2000
- **Hours used:** 24
- **Cloud Provider:** Private Infrustructure
- **Compute Region:** Southern California
- **Carbon Emitted:** 1.57 kg
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
- **CPU**: AMD EPYC 7313P 16-Core Processor 3.00 GHz
- **GPU**: NVIDIA RTX A2000
- **vRAM**: 6GB
- **RAM**: 128GB
#### Software
- **OS**: Windows 11 Enterprise - 21H2
- **Python**: Python 3.10.14
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
[IN PROGRESS]
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Model Card Contact
Jesse Arzate: [email protected] |