metadata
license: creativeml-openrail-m
base_model: PixArt-alpha/PixArt-Sigma-XL-2-1024-MS
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- simpletuner
- full
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
Digital art of a topless anthro male wolf wearing a sun hat and blue
banana-patterned swimming trunks
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
pixart-sigma-test
This is a full rank finetune derived from PixArt-alpha/PixArt-Sigma-XL-2-1024-MS.
The main validation prompt used during training was:
Digital art of a topless anthro male wolf wearing a sun hat and blue banana-patterned swimming trunks
Validation settings
- CFG:
7.5
- CFG Rescale:
0.0
- Steps:
30
- Sampler:
None
- Seed:
42
- Resolution:
1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 3
- Training steps: 100
- Learning rate: 0.0001
- Effective batch size: 160
- Micro-batch size: 2
- Gradient accumulation steps: 40
- Number of GPUs: 2
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Enabled
Datasets
4o-training-images-thinned
- Repeats: 0
- Total number of images: ~4960
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'pixart-sigma-test'
pipeline = DiffusionPipeline.from_pretrained(model_id)
prompt = "Digital art of a topless anthro male wolf wearing a sun hat and blue banana-patterned swimming trunks"
negative_prompt = "blurry, cropped, ugly"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt='blurry, cropped, ugly',
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1152,
height=768,
guidance_scale=7.5,
guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")