lillian039's picture
End of training
a257541 verified
|
raw
history blame
2.12 kB
metadata
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
  - trl
  - sft
  - generated_from_trainer
datasets:
  - barc0/cot_transduction_100k-gpt4omini-description
  - barc0/cot_transduction_100k-gpt4-description
  - barc0/cot_transduction_200k_HEAVY_gpt4o-description
model-index:
  - name: cot-400k-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3
    results: []

cot-400k-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the barc0/cot_transduction_100k-gpt4omini-description, the barc0/cot_transduction_100k-gpt4-description and the barc0/cot_transduction_200k_HEAVY_gpt4o-description datasets. It achieves the following results on the evaluation set:

  • Loss: 0.2160

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.2231 0.9998 2994 0.2183
0.1861 2.0 5989 0.2049
0.1483 2.9995 8982 0.2160

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1