lillian039's picture
End of training
2c9e59b verified
metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
  - >-
    barc0/induction_100k-gpt4-description-gpt4omini-code_generated_problems_messages_format_0.3
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: induction-gpt4100k-100seeds-barc-llama3.1-8b-instruct-lora64_lr2e-4_epoch3
    results: []

induction-gpt4100k-100seeds-barc-llama3.1-8b-instruct-lora64_lr2e-4_epoch3

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the barc0/induction_100k-gpt4-description-gpt4omini-code_generated_problems_messages_format_0.3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.2809 1.0 760 0.2806
0.2656 2.0 1520 0.2647
0.2337 3.0 2280 0.2625

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1