Edit model card

l3.1-8b-inst-lora64-induction-gpt4wmini100k-mini100k-gpt4wmini20k-gpt4wllama20k-lr2e-4-ep3

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the barc0/induction_100k-gpt4-description-gpt4omini-code_generated_problems_messages_format_0.3, the barc0/induction_100k_gpt4o-mini_generated_problems_seed100.jsonl_messages_format_0.3, the barc0/induction_gpt-4_description_20000_with_llama_codegen_messages_format_0.3 and the barc0/induction_gpt-4_description_20000_with_gpt-4o-mini_codegen_messages_format_0.3 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.2684

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.2882 1.0 1784 0.2852
0.257 2.0 3568 0.2705
0.2329 3.0 5352 0.2684

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for barc0/l3.1-8b-inst-lora64-induction-gpt4wmini100k-mini100k-gpt4wmini20k-gpt4wllama20k-lr2e-4-ep3

Adapter
(439)
this model

Datasets used to train barc0/l3.1-8b-inst-lora64-induction-gpt4wmini100k-mini100k-gpt4wmini20k-gpt4wllama20k-lr2e-4-ep3