Exllama v2 Quantizations of airoboros-34b-3.2

Using turboderp's ExLlamaV2 v0.0.14 for quantization.

The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)

Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.

Original model: https://huggingface.co/jondurbin/airoboros-34b-3.2

Branch Bits lm_head bits VRAM (4k) VRAM (16k) VRAM (32k) Description
6_5 6.5 8.0 28.9 GB 31.6 GB 35.6 GB Near unquantized performance at vastly reduced size, recommended.
4_25 4.25 6.0 19.5 GB 22.2 GB 26.2 GB GPTQ equivalent bits per weight, slightly higher quality.
3_5 3.5 6.0 16.5 GB 19.2 GB 23.2 GB Lower quality, only use if you have to.
3_0 3.0 6.0 14.3 GB 17.0 GB 21.0 GB Very low quality, usable with 16gb of VRAM.

Download instructions

With git:

git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/airoboros-34b-3.2-exl2 airoboros-34b-3.2-exl2-6_5

With huggingface hub (credit to TheBloke for instructions):

pip3 install huggingface-hub

To download the main (only useful if you only care about measurement.json) branch to a folder called airoboros-34b-3.2-exl2:

mkdir airoboros-34b-3.2-exl2
huggingface-cli download bartowski/airoboros-34b-3.2-exl2 --local-dir airoboros-34b-3.2-exl2 --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

Linux:

mkdir airoboros-34b-3.2-exl2-6_5
huggingface-cli download bartowski/airoboros-34b-3.2-exl2 --revision 6_5 --local-dir airoboros-34b-3.2-exl2-6_5 --local-dir-use-symlinks False

Windows (which apparently doesn't like _ in folders sometimes?):

mkdir airoboros-34b-3.2-exl2-6.5
huggingface-cli download bartowski/airoboros-34b-3.2-exl2 --revision 6_5 --local-dir airoboros-34b-3.2-exl2-6.5 --local-dir-use-symlinks False

Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Datasets used to train bartowski/airoboros-34b-3.2-exl2