How to infer
install libraries
pip install unsloth
pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install -U torch
pip install -U peft
code
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "baxin/llm-jp-3-13b-it-seq-r-la_lora_test"
HF_TOKEN=""
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
# load elyza-tasks-100-TV jsonl
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
FastLanguageModel.for_inference(model)
system_prompt = "γγͺγγ―ζη€Ίγ«ζ³¨ζζ·±γεΎγθ¦ͺεγͺγ’γ·γΉγΏγ³γγ§γγζη€ΊγγΉγγγγγ€γΉγγγγ§η解γγεηγγ¦γγ γγγ"
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""{system_prompt}\n\n### ζη€Ί\n{input}\n### εη\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 3072, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### εη')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
Uploaded model
- Developed by: baxin
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for baxin/llm-jp-3-13b-it-seq-r-la_lora_test
Base model
llm-jp/llm-jp-3-13b