Text Generation
Transformers
Safetensors
English
Japanese
gemma2
text-generation-inference
unsloth
trl
conversational
Inference Endpoints

Model Card for Model ID

Instruction tuning The models have been fine-tuned.

Usage

!pip install vllm==0.6.4.post1 --force-reinstall

import time
import torch
import transformers
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
)
import vllm ### packaging==24.1にしないとエラーになる!! ###
print(vllm.__version__)

MAX_LENGTH = 1000
MODEL_NAME = "bay-llm/gemma-9b-SFT-180-16bit" # コンペで提出したいモデルに適宜置換

llm = vllm.LLM(
    model=MODEL_NAME,
    tensor_parallel_size=1,
    gpu_memory_utilization=0.95,
    trust_remote_code=True,
    max_model_len=1024,
    
)
tokenizer = llm.get_tokenizer()

# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
import json
datasets = []
with open("../elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

print(datasets[0])

messages_list = [
    [{"role": "user", "content": datasets[i]["input"]}] for i in range(len(datasets))
]

prompts = [line[0]["content"] for line in messages_list]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
sampling_params = vllm.SamplingParams(
    temperature=0.5,
    max_tokens=512,
)
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
for prompt, response in zip(prompts, outputs):
    print("prompt:", prompt)
    print("output:", response.outputs[0].text.strip())
    print("-"*80)

import json
data = [{
    "task_id": i,
    "input": prompts[i],
    "output": outputs[i].outputs[0].text.strip()
} for i in range(len(datasets))]
file_path = 'submmit.jsonl'
with open(file_path, 'w', encoding='utf-8') as file:
    for entry in data:
        json.dump(entry, file, ensure_ascii=False)
        file.write('\n')

Uploaded model

  • Developed by: bay-llm
  • License: gemma
  • Finetuned from model : unsloth/gemma-2-9b-bnb-4bit

This gemma2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
31
Safetensors
Model size
9.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bay-llm/gemma-9b-SFT-180-16bit

Base model

google/gemma-2-9b
Finetuned
(226)
this model

Datasets used to train bay-llm/gemma-9b-SFT-180-16bit