YAML Metadata Error: "datasets[0]" with value "common_voice mn" is not valid. If possible, use a dataset id from https://hf.co/datasets.

Wav2Vec2-Large-XLSR-53-Mongolian-v1

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Mongolian using the Common Voice.

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "mn", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian-v1")
model = Wav2Vec2ForCTC.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian-v1")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
     speech_array, sampling_rate = torchaudio.load(batch["path"])
     batch["speech"] = resampler(speech_array).squeeze().numpy()
     return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
     logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Mongolian test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "mn", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian-v1")
model = Wav2Vec2ForCTC.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian-v1")
model.to("cuda")

chars_to_ignore_regex = '[\!\"\'\,\.\«\»\?\-]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
     batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
     speech_array, sampling_rate = torchaudio.load(batch["path"])
     batch["speech"] = resampler(speech_array).squeeze().numpy()
     return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
     inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

     with torch.no_grad():
          logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

     pred_ids = torch.argmax(logits, dim=-1)
     batch["pred_strings"] = processor.batch_decode(pred_ids)
     return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 34.64 %

Training

The Common Voice train dataset was used for training as well as ... and ...

Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including bayartsogt/wav2vec2-large-xlsr-mongolian-v1

Evaluation results