Image-Text-to-Text
Transformers
Safetensors
English
Chinese
llava
vision-language
llm
lmm
conversational
Inference Endpoints
tiny-llava-v1-hf / README.md
bczhou's picture
Update README.md
70f28eb verified
|
raw
history blame
15.4 kB
---
license: apache-2.0
datasets:
- Lin-Chen/ShareGPT4V
- liuhaotian/LLaVA-Pretrain
- liuhaotian/LLaVA-Instruct-150K
language:
- en
- zh
tags:
- llava
- vision-language
- llm
- lmm
pipeline_tag: image-text-to-text
---
<h2 align="center"> <a href="https://arxiv.org/abs/2402.14289">TinyLLaVA: A Framework of Small-scale Large Multimodal Models</a>
<h5 align="center">
[![github](https://img.shields.io/badge/GitHub-TinyLLaVA-blue)](https://github.com/DLCV-BUAA/TinyLLaVABench) [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE)
## &#x1F389; News
* **[2024.03.10]** base recipe out!
* **[2024.03.10]** Finetune scripts out!
* **[2024.02.25]** Update evaluation scripts and docs!
* **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
* **[2024.02.24]** Example code on inference and model loading added!
* **[2024.02.23]** Evaluation code and scripts released!
* **[2024.02.21]** Creating the [TinyLLaVABench](https://github.com/DLCV-BUAA/TinyLLavaBench) repository on GitHub!
* **[2024.02.21]** Our paper: [TinyLLaVA: A Framework of Small-scale Large Multimodal Models](https://arxiv.org/abs/2402.14289) is out!
* **[2024.01.11]** Our fist model [TinyLLaVA-1.4B](https://huggingface.co/bczhou/tiny-llava-v1-hf) is out!
## &#x231B; TODO
- [ ] Add support for Ollama and llama.cpp.
- [x] Developers' guide / How to build demo locally.
- [x] Training and custom finetuning docs.
- [x] Model Zoo descriptions.
- [x] Examples and inference.
- [x] Release code for training.
- [x] Add descriptions for evaluation.
- [x] Add descriptions for data preparation.
- [x] Release TinyLLaVA-1.5B and TinyLLaVA-2.0B.
- [x] Release TinyLLaVA-3.1B.
- [x] Release the evaluation code and weights today(2024.2.23).
### &#x1F525; High performance, but with fewer parameters
- Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
## Contents
- [Install](#x1f527-requirements-and-installation)
- [Model Zoo](#x1f433-model-zoo)
- [Demo](#Demo)
- [Quick Start](#x1f527-quick-start)
- [Run Inference](#x1f527-run-inference)
- [Evaluation](#evaluation)
- [Data](#data-preparation)
- [Train](#train)
- [Custom Finetune](#custom-finetune)
## &#x1F527; Requirements and Installation
We recommend the requirements as follows.
1. Clone this repository and navigate to LLaVA folder
```bash
git clone https://github.com/DLCV-BUAA/TinyLLaVABench.git
cd TinyLLaVABench
```
2. Install Package
```Shell
conda create -n tinyllava python=3.10 -y
conda activate tinyllava
pip install --upgrade pip # enable PEP 660 support
pip install -e .
```
3. Install additional packages for training cases
```Shell
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
```
### Upgrade to the latest code base
```Shell
git pull
pip install -e .
# if you see some import errors when you upgrade, please try running the command below (without #)
# pip install flash-attn --no-build-isolation --no-cache-dir
```
## &#x1F433; Model Zoo
### Legacy Model
- [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf)
### Pretrained Models
- [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
- [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B)
- [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B)
### Model Details
| Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
|---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------|
| TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
| TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
| TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
## Demo
### Gradio Web Demo
Launch a local web demo by running:
```shell
python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B
```
### CLI Inference
We also support running inference with CLI. To use our model, run:
```shell
python -m tinyllava.serve.cli \
--model-path bczhou/TinyLLaVA-3.1B \
--image-file "./tinyllava/serve/examples/extreme_ironing.jpg"
```
## &#x1F527; Quick Start
<details>
<summary>Load model</summary>
```Python
from tinyllava.model.builder import load_pretrained_model
from tinyllava.mm_utils import get_model_name_from_path
from tinyllava.eval.run_tiny_llava import eval_model
model_path = "bczhou/TinyLLaVA-3.1B"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path)
)
```
</details>
## &#x1F527; Run Inference
Here's an example of running inference with [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
<details>
<summary>Run Inference</summary>
```Python
from tinyllava.model.builder import load_pretrained_model
from tinyllava.mm_utils import get_model_name_from_path
from tinyllava.eval.run_tiny_llava import eval_model
model_path = "bczhou/TinyLLaVA-3.1B"
prompt = "What are the things I should be cautious about when I visit here?"
image_file = "https://llava-vl.github.io/static/images/view.jpg"
args = type('Args', (), {
"model_path": model_path,
"model_base": None,
"model_name": get_model_name_from_path(model_path),
"query": prompt,
"conv_mode": "phi",
"image_file": image_file,
"sep": ",",
"temperature": 0,
"top_p": None,
"num_beams": 1,
"max_new_tokens": 512
})()
eval_model(args)
```
</details>
### Important
We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table:
| model | conv_mode |
|---------------- |----------- |
| TinyLLaVA-3.1B | phi |
| TinyLLaVA-2.0B | phi |
| TinyLLaVA-1.5B | v1 |
## Evaluation
To ensure the reproducibility, we evaluate the models with greedy decoding.
See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md)
## Data Preparation
In our paper, we used two different datasets: the [LLaVA dataset](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#pretrain-feature-alignment) and the [ShareGPT4V dataset](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md), and compared their differences. In this section, we provide information on data preparation.
### Pretraining Images
* LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset.
* ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset.
### Pretraining Annotations
* LLaVA: The pretraining annotations of LLaVA are [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
* ShareGPT4V: The pretraining annotations of ShareGPT4V are [here](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json).
### SFT Images & Annotations
The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the [100K ShareGPT4V data](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json).
### Download data
1. Download relevant images
- LAION-CC-SBU-558K: [images.zip](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip)
- COCO: This dataset is from the [COCO2017 challenge](https://cocodataset.org/). Download: [train2017](http://images.cocodataset.org/zips/train2017.zip)
- WebData: This dataset is curated by the [ShareGPT4V project](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V). Download: [images](https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing). Only for academic usage.
- SAM: This dataset is collected by [Meta](https://ai.meta.com/datasets/segment-anything-downloads/). Download: [images](https://ai.meta.com/datasets/segment-anything-downloads/). We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from [here](https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link).
- GQA: [GQA project page](https://cs.stanford.edu/people/dorarad/gqa/about.html). Download: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
- OCR-VQA: [OCR-VQA project page](https://ocr-vqa.github.io/). Download: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing). We save all files as `.jpg`
- TextVQA: [TextVQA project page](https://textvqa.org/). Download: [trainvalimages](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
- VisualGenome: [VisualGenome project page](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Download: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
2. Download relevant annotations
- LLaVA's pretraining annotations: [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
- LLaVA's SFT annotations: [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json)
- ShareGPT4V's pretraining annotations: [share-captioner_coco_lcs_sam_1246k_1107.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json)
- ShareGPT4V's SFT annotations: [sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json)
### Organize Data
Organize the image files and annotation files as follows in `path/to/your/data`:
```none
data
β”œβ”€β”€ llava
β”‚ β”œβ”€β”€ llava_pretrain
β”‚ β”‚ β”œβ”€β”€ images
β”‚ β”‚ β”œβ”€β”€ blip_laion_cc_sbu_558k.json
β”œβ”€β”€ coco
β”‚ β”œβ”€β”€ train2017
β”œβ”€β”€ sam
β”‚ β”œβ”€β”€ images
β”œβ”€β”€ gqa
β”‚ β”œβ”€β”€ images
β”œβ”€β”€ ocr_vqa
β”‚ β”œβ”€β”€ images
β”œβ”€β”€ textvqa
β”‚ β”œβ”€β”€ train_images
β”œβ”€β”€ vg
β”‚ β”œβ”€β”€ VG_100K
β”‚ β”œβ”€β”€ VG_100K_2
β”œβ”€β”€ share_textvqa
β”‚ β”œβ”€β”€ images
β”œβ”€β”€ web-celebrity
β”‚ β”œβ”€β”€ images
β”œβ”€β”€ web-landmark
β”‚ β”œβ”€β”€ images
β”œβ”€β”€ wikiart
β”‚ β”œβ”€β”€ images
β”œβ”€β”€ text_files
β”‚ β”œβ”€β”€ llava_v1_5_mix665k.json
β”‚ β”œβ”€β”€ share-captioner_coco_lcs_sam_1246k_1107.json
β”‚ β”œβ”€β”€ sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json
```
## Train
**This section we describe the base recipe.**
### Hyperparameters
Both hyperparameters used in pretraining and finetuning are provided below.
1. Pretraining
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
|----------------| ---: | ---: | ---: |-----------:| ---: |
| TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 |
2. Finetuning
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
|----------------| ---: | ---: | ---: |-----------:| ---: |
| TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 |
### Pretrain
**Replace paths to your paths**
Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/pretrain.sh).
### Finetune
**Replace paths to your paths**
Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh).
## Custom-Finetune
Check out our custom finetune using LoRA [here](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/dev/docs/CUTOM_FINETUNE.md).
#### - Prompt Template
The model supports multi-image and multi-prompt generation. When using the model, make sure to follow the correct prompt template (`USER: <image>xxx\nASSISTANT:`), where `<image>` token is a place-holding special token for image embeddings.
## Model Inference from `pipeline` and `transformers`
#### - Using `pipeline`:
Below we used [`"bczhou/tiny-llava-v1-hf"`](https://huggingface.co/bczhou/tiny-llava-v1-hf) checkpoint.
```python
from transformers import pipeline
from PIL import Image
import requests
model_id = "bczhou/tiny-llava-v1-hf"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs[0])
>>> {"generated_text': 'USER: \nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: The label 15 represents lava, which is a type of volcanic rock."}
```
#### - Using pure `transformers`:
Below is an example script to run generation in `float16` precision on a GPU device:
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "bczhou/tiny-llava-v1-hf"
prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
## &#x270F; Citation
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
```BibTeX
@misc{zhou2024tinyllava,
title={TinyLLaVA: A Framework of Small-scale Large Multimodal Models},
author={Baichuan Zhou and Ying Hu and Xi Weng and Junlong Jia and Jie Luo and Xien Liu and Ji Wu and Lei Huang},
year={2024},
eprint={2402.14289},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
## ❀️ Community efforts
* Our codebase is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) project. Great work!
* Our project uses data from the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V) project. Great work!