|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Lin-Chen/ShareGPT4V |
|
- liuhaotian/LLaVA-Pretrain |
|
- liuhaotian/LLaVA-Instruct-150K |
|
language: |
|
- en |
|
- zh |
|
tags: |
|
- llava |
|
- vision-language |
|
- llm |
|
- lmm |
|
pipeline_tag: image-text-to-text |
|
--- |
|
<h2 align="center"> <a href="https://arxiv.org/abs/2402.14289">TinyLLaVA: A Framework of Small-scale Large Multimodal Models</a> |
|
|
|
<h5 align="center"> |
|
|
|
[![github](https://img.shields.io/badge/GitHub-TinyLLaVA-blue)](https://github.com/DLCV-BUAA/TinyLLaVABench) [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE) |
|
|
|
## 🎉 News |
|
* **[2024.03.10]** base recipe out! |
|
* **[2024.03.10]** Finetune scripts out! |
|
* **[2024.02.25]** Update evaluation scripts and docs! |
|
* **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B! |
|
* **[2024.02.24]** Example code on inference and model loading added! |
|
* **[2024.02.23]** Evaluation code and scripts released! |
|
* **[2024.02.21]** Creating the [TinyLLaVABench](https://github.com/DLCV-BUAA/TinyLLavaBench) repository on GitHub! |
|
* **[2024.02.21]** Our paper: [TinyLLaVA: A Framework of Small-scale Large Multimodal Models](https://arxiv.org/abs/2402.14289) is out! |
|
* **[2024.01.11]** Our fist model [TinyLLaVA-1.4B](https://huggingface.co/bczhou/tiny-llava-v1-hf) is out! |
|
|
|
## ⌛ TODO |
|
- [ ] Add support for Ollama and llama.cpp. |
|
- [x] Developers' guide / How to build demo locally. |
|
- [x] Training and custom finetuning docs. |
|
- [x] Model Zoo descriptions. |
|
- [x] Examples and inference. |
|
- [x] Release code for training. |
|
- [x] Add descriptions for evaluation. |
|
- [x] Add descriptions for data preparation. |
|
- [x] Release TinyLLaVA-1.5B and TinyLLaVA-2.0B. |
|
- [x] Release TinyLLaVA-3.1B. |
|
- [x] Release the evaluation code and weights today(2024.2.23). |
|
### 🔥 High performance, but with fewer parameters |
|
|
|
- Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL. |
|
|
|
## Contents |
|
|
|
- [Install](#x1f527-requirements-and-installation) |
|
- [Model Zoo](#x1f433-model-zoo) |
|
- [Demo](#Demo) |
|
- [Quick Start](#x1f527-quick-start) |
|
- [Run Inference](#x1f527-run-inference) |
|
- [Evaluation](#evaluation) |
|
- [Data](#data-preparation) |
|
- [Train](#train) |
|
- [Custom Finetune](#custom-finetune) |
|
|
|
|
|
## 🔧 Requirements and Installation |
|
|
|
We recommend the requirements as follows. |
|
|
|
1. Clone this repository and navigate to LLaVA folder |
|
```bash |
|
git clone https://github.com/DLCV-BUAA/TinyLLaVABench.git |
|
cd TinyLLaVABench |
|
``` |
|
|
|
2. Install Package |
|
```Shell |
|
conda create -n tinyllava python=3.10 -y |
|
conda activate tinyllava |
|
pip install --upgrade pip # enable PEP 660 support |
|
pip install -e . |
|
``` |
|
|
|
3. Install additional packages for training cases |
|
```Shell |
|
pip install -e ".[train]" |
|
pip install flash-attn --no-build-isolation |
|
``` |
|
### Upgrade to the latest code base |
|
|
|
```Shell |
|
git pull |
|
pip install -e . |
|
|
|
# if you see some import errors when you upgrade, please try running the command below (without #) |
|
# pip install flash-attn --no-build-isolation --no-cache-dir |
|
``` |
|
|
|
## 🐳 Model Zoo |
|
### Legacy Model |
|
- [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf) |
|
|
|
### Pretrained Models |
|
- [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) |
|
- [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) |
|
- [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) |
|
|
|
### Model Details |
|
| Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA | |
|
|---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------| |
|
| TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 | |
|
| TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 | |
|
| TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 | |
|
|
|
|
|
## Demo |
|
|
|
### Gradio Web Demo |
|
|
|
Launch a local web demo by running: |
|
```shell |
|
python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B |
|
``` |
|
|
|
### CLI Inference |
|
|
|
We also support running inference with CLI. To use our model, run: |
|
```shell |
|
python -m tinyllava.serve.cli \ |
|
--model-path bczhou/TinyLLaVA-3.1B \ |
|
--image-file "./tinyllava/serve/examples/extreme_ironing.jpg" |
|
``` |
|
|
|
|
|
## 🔧 Quick Start |
|
|
|
<details> |
|
<summary>Load model</summary> |
|
|
|
```Python |
|
from tinyllava.model.builder import load_pretrained_model |
|
from tinyllava.mm_utils import get_model_name_from_path |
|
from tinyllava.eval.run_tiny_llava import eval_model |
|
|
|
model_path = "bczhou/TinyLLaVA-3.1B" |
|
|
|
tokenizer, model, image_processor, context_len = load_pretrained_model( |
|
model_path=model_path, |
|
model_base=None, |
|
model_name=get_model_name_from_path(model_path) |
|
) |
|
``` |
|
</details> |
|
|
|
## 🔧 Run Inference |
|
Here's an example of running inference with [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) |
|
<details> |
|
<summary>Run Inference</summary> |
|
|
|
```Python |
|
from tinyllava.model.builder import load_pretrained_model |
|
from tinyllava.mm_utils import get_model_name_from_path |
|
from tinyllava.eval.run_tiny_llava import eval_model |
|
|
|
model_path = "bczhou/TinyLLaVA-3.1B" |
|
prompt = "What are the things I should be cautious about when I visit here?" |
|
image_file = "https://llava-vl.github.io/static/images/view.jpg" |
|
|
|
args = type('Args', (), { |
|
"model_path": model_path, |
|
"model_base": None, |
|
"model_name": get_model_name_from_path(model_path), |
|
"query": prompt, |
|
"conv_mode": "phi", |
|
"image_file": image_file, |
|
"sep": ",", |
|
"temperature": 0, |
|
"top_p": None, |
|
"num_beams": 1, |
|
"max_new_tokens": 512 |
|
})() |
|
|
|
eval_model(args) |
|
``` |
|
</details> |
|
|
|
### Important |
|
We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table: |
|
| model | conv_mode | |
|
|---------------- |----------- | |
|
| TinyLLaVA-3.1B | phi | |
|
| TinyLLaVA-2.0B | phi | |
|
| TinyLLaVA-1.5B | v1 | |
|
|
|
## Evaluation |
|
To ensure the reproducibility, we evaluate the models with greedy decoding. |
|
|
|
See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md) |
|
|
|
## Data Preparation |
|
|
|
In our paper, we used two different datasets: the [LLaVA dataset](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#pretrain-feature-alignment) and the [ShareGPT4V dataset](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md), and compared their differences. In this section, we provide information on data preparation. |
|
|
|
### Pretraining Images |
|
* LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset. |
|
* ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset. |
|
|
|
### Pretraining Annotations |
|
* LLaVA: The pretraining annotations of LLaVA are [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain). |
|
* ShareGPT4V: The pretraining annotations of ShareGPT4V are [here](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json). |
|
|
|
|
|
### SFT Images & Annotations |
|
The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the [100K ShareGPT4V data](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json). |
|
|
|
### Download data |
|
|
|
1. Download relevant images |
|
|
|
- LAION-CC-SBU-558K: [images.zip](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip) |
|
- COCO: This dataset is from the [COCO2017 challenge](https://cocodataset.org/). Download: [train2017](http://images.cocodataset.org/zips/train2017.zip) |
|
- WebData: This dataset is curated by the [ShareGPT4V project](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V). Download: [images](https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing). Only for academic usage. |
|
- SAM: This dataset is collected by [Meta](https://ai.meta.com/datasets/segment-anything-downloads/). Download: [images](https://ai.meta.com/datasets/segment-anything-downloads/). We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from [here](https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link). |
|
- GQA: [GQA project page](https://cs.stanford.edu/people/dorarad/gqa/about.html). Download: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip) |
|
- OCR-VQA: [OCR-VQA project page](https://ocr-vqa.github.io/). Download: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing). We save all files as `.jpg` |
|
- TextVQA: [TextVQA project page](https://textvqa.org/). Download: [trainvalimages](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip) |
|
- VisualGenome: [VisualGenome project page](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Download: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip) |
|
|
|
|
|
2. Download relevant annotations |
|
|
|
- LLaVA's pretraining annotations: [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) |
|
- LLaVA's SFT annotations: [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json) |
|
- ShareGPT4V's pretraining annotations: [share-captioner_coco_lcs_sam_1246k_1107.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json) |
|
- ShareGPT4V's SFT annotations: [sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json) |
|
|
|
|
|
### Organize Data |
|
|
|
Organize the image files and annotation files as follows in `path/to/your/data`: |
|
|
|
```none |
|
data |
|
βββ llava |
|
β βββ llava_pretrain |
|
β β βββ images |
|
β β βββ blip_laion_cc_sbu_558k.json |
|
βββ coco |
|
β βββ train2017 |
|
βββ sam |
|
β βββ images |
|
βββ gqa |
|
β βββ images |
|
βββ ocr_vqa |
|
β βββ images |
|
βββ textvqa |
|
β βββ train_images |
|
βββ vg |
|
β βββ VG_100K |
|
β βββ VG_100K_2 |
|
βββ share_textvqa |
|
β βββ images |
|
βββ web-celebrity |
|
β βββ images |
|
βββ web-landmark |
|
β βββ images |
|
βββ wikiart |
|
β βββ images |
|
βββ text_files |
|
β βββ llava_v1_5_mix665k.json |
|
β βββ share-captioner_coco_lcs_sam_1246k_1107.json |
|
β βββ sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json |
|
``` |
|
|
|
## Train |
|
|
|
**This section we describe the base recipe.** |
|
### Hyperparameters |
|
Both hyperparameters used in pretraining and finetuning are provided below. |
|
|
|
1. Pretraining |
|
|
|
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | |
|
|----------------| ---: | ---: | ---: |-----------:| ---: | |
|
| TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 | |
|
|
|
2. Finetuning |
|
|
|
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | |
|
|----------------| ---: | ---: | ---: |-----------:| ---: | |
|
| TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 | |
|
|
|
### Pretrain |
|
|
|
**Replace paths to your paths** |
|
|
|
Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/pretrain.sh). |
|
|
|
### Finetune |
|
|
|
**Replace paths to your paths** |
|
|
|
Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh). |
|
|
|
## Custom-Finetune |
|
|
|
Check out our custom finetune using LoRA [here](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/dev/docs/CUTOM_FINETUNE.md). |
|
|
|
|
|
#### - Prompt Template |
|
The model supports multi-image and multi-prompt generation. When using the model, make sure to follow the correct prompt template (`USER: <image>xxx\nASSISTANT:`), where `<image>` token is a place-holding special token for image embeddings. |
|
|
|
## Model Inference from `pipeline` and `transformers` |
|
#### - Using `pipeline`: |
|
Below we used [`"bczhou/tiny-llava-v1-hf"`](https://huggingface.co/bczhou/tiny-llava-v1-hf) checkpoint. |
|
|
|
```python |
|
from transformers import pipeline |
|
from PIL import Image |
|
import requests |
|
model_id = "bczhou/tiny-llava-v1-hf" |
|
pipe = pipeline("image-to-text", model=model_id) |
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
prompt = "USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:" |
|
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200}) |
|
print(outputs[0]) |
|
>>> {"generated_text': 'USER: \nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: The label 15 represents lava, which is a type of volcanic rock."} |
|
``` |
|
|
|
#### - Using pure `transformers`: |
|
Below is an example script to run generation in `float16` precision on a GPU device: |
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
import torch |
|
from transformers import AutoProcessor, LlavaForConditionalGeneration |
|
model_id = "bczhou/tiny-llava-v1-hf" |
|
prompt = "USER: <image>\nWhat are these?\nASSISTANT:" |
|
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
model = LlavaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
).to(0) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
raw_image = Image.open(requests.get(image_file, stream=True).raw) |
|
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16) |
|
output = model.generate(**inputs, max_new_tokens=200, do_sample=False) |
|
print(processor.decode(output[0][2:], skip_special_tokens=True)) |
|
``` |
|
|
|
## ✏ Citation |
|
|
|
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. |
|
|
|
```BibTeX |
|
@misc{zhou2024tinyllava, |
|
title={TinyLLaVA: A Framework of Small-scale Large Multimodal Models}, |
|
author={Baichuan Zhou and Ying Hu and Xi Weng and Junlong Jia and Jie Luo and Xien Liu and Ji Wu and Lei Huang}, |
|
year={2024}, |
|
eprint={2402.14289}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
|
|
## β€οΈ Community efforts |
|
* Our codebase is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) project. Great work! |
|
* Our project uses data from the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V) project. Great work! |