resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_kd

This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6048
  • Accuracy: 0.7867
  • Brier Loss: 0.3046
  • Nll: 2.0167
  • F1 Micro: 0.7868
  • F1 Macro: 0.7867
  • Ece: 0.0468
  • Aurc: 0.0597

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 250 4.1589 0.1305 0.9320 7.8922 0.1305 0.0928 0.0637 0.8337
4.1546 2.0 500 3.6898 0.3515 0.8840 4.7696 0.3515 0.3150 0.2354 0.5486
4.1546 3.0 750 2.3450 0.4863 0.6606 3.2068 0.4863 0.4495 0.0978 0.2927
2.419 4.0 1000 1.5206 0.6125 0.5126 2.7884 0.6125 0.5996 0.0512 0.1677
2.419 5.0 1250 1.2545 0.6593 0.4574 2.6041 0.6593 0.6524 0.0483 0.1337
1.1615 6.0 1500 0.9718 0.704 0.4062 2.4047 0.704 0.7017 0.0506 0.1043
1.1615 7.0 1750 0.8636 0.73 0.3760 2.1975 0.7300 0.7304 0.0522 0.0902
0.7217 8.0 2000 0.7892 0.737 0.3632 2.1583 0.737 0.7377 0.0551 0.0835
0.7217 9.0 2250 0.7438 0.754 0.3470 2.0559 0.754 0.7531 0.0534 0.0766
0.5268 10.0 2500 0.7322 0.758 0.3443 2.1043 0.7580 0.7584 0.0510 0.0742
0.5268 11.0 2750 0.7003 0.7632 0.3335 2.0510 0.7632 0.7639 0.0472 0.0697
0.4197 12.0 3000 0.6921 0.7665 0.3325 2.0569 0.7665 0.7668 0.0568 0.0694
0.4197 13.0 3250 0.7003 0.7618 0.3330 2.0293 0.7618 0.7618 0.0465 0.0721
0.3575 14.0 3500 0.6681 0.7728 0.3244 2.0037 0.7728 0.7739 0.0505 0.0664
0.3575 15.0 3750 0.6862 0.7718 0.3279 2.0294 0.7717 0.7727 0.0442 0.0693
0.3181 16.0 4000 0.6681 0.7738 0.3246 2.0559 0.7738 0.7739 0.0509 0.0671
0.3181 17.0 4250 0.6473 0.7775 0.3177 1.9978 0.7775 0.7784 0.0494 0.0644
0.2874 18.0 4500 0.6448 0.78 0.3172 2.0396 0.78 0.7805 0.0495 0.0651
0.2874 19.0 4750 0.6484 0.779 0.3153 2.0251 0.779 0.7790 0.0519 0.0636
0.2691 20.0 5000 0.6430 0.7768 0.3164 2.0897 0.7768 0.7771 0.0489 0.0635
0.2691 21.0 5250 0.6363 0.78 0.3145 2.0663 0.78 0.7802 0.0476 0.0640
0.2509 22.0 5500 0.6327 0.782 0.3127 2.0358 0.782 0.7820 0.0440 0.0634
0.2509 23.0 5750 0.6287 0.7863 0.3113 2.0157 0.7863 0.7865 0.0463 0.0630
0.2393 24.0 6000 0.6315 0.7778 0.3137 2.0623 0.7778 0.7773 0.0492 0.0633
0.2393 25.0 6250 0.6345 0.7775 0.3149 2.0397 0.7775 0.7773 0.0514 0.0635
0.2291 26.0 6500 0.6233 0.7815 0.3102 1.9988 0.7815 0.7816 0.0444 0.0626
0.2291 27.0 6750 0.6224 0.783 0.3095 2.0085 0.7830 0.7830 0.0502 0.0615
0.2191 28.0 7000 0.6159 0.7835 0.3089 2.0340 0.7835 0.7834 0.0499 0.0614
0.2191 29.0 7250 0.6203 0.7825 0.3096 2.0280 0.7825 0.7825 0.0480 0.0617
0.2139 30.0 7500 0.6233 0.7802 0.3093 2.0660 0.7802 0.7805 0.0518 0.0609
0.2139 31.0 7750 0.6128 0.785 0.3049 2.0148 0.785 0.7851 0.0471 0.0604
0.2068 32.0 8000 0.6124 0.7855 0.3064 2.0336 0.7855 0.7855 0.0433 0.0604
0.2068 33.0 8250 0.6117 0.7835 0.3068 2.0208 0.7835 0.7833 0.0469 0.0604
0.202 34.0 8500 0.6105 0.7857 0.3063 1.9918 0.7857 0.7854 0.0454 0.0611
0.202 35.0 8750 0.6136 0.7877 0.3088 2.0272 0.7877 0.7884 0.0444 0.0607
0.1974 36.0 9000 0.6095 0.786 0.3052 2.0275 0.786 0.7862 0.0423 0.0600
0.1974 37.0 9250 0.6108 0.786 0.3077 2.0035 0.786 0.7860 0.0477 0.0606
0.1945 38.0 9500 0.6107 0.7817 0.3078 2.0042 0.7817 0.7820 0.0482 0.0611
0.1945 39.0 9750 0.6077 0.7875 0.3051 1.9959 0.7875 0.7878 0.0510 0.0599
0.1919 40.0 10000 0.6099 0.7863 0.3072 2.0323 0.7863 0.7866 0.0468 0.0603
0.1919 41.0 10250 0.6046 0.7847 0.3046 2.0113 0.7847 0.7850 0.0442 0.0600
0.1874 42.0 10500 0.6062 0.7865 0.3059 2.0055 0.7865 0.7865 0.0486 0.0598
0.1874 43.0 10750 0.6051 0.787 0.3042 2.0151 0.787 0.7870 0.0451 0.0596
0.1859 44.0 11000 0.6082 0.7855 0.3063 2.0123 0.7855 0.7860 0.0470 0.0600
0.1859 45.0 11250 0.6066 0.7867 0.3047 2.0000 0.7868 0.7865 0.0479 0.0599
0.1856 46.0 11500 0.6049 0.7863 0.3054 2.0058 0.7863 0.7861 0.0475 0.0598
0.1856 47.0 11750 0.6041 0.7887 0.3047 1.9992 0.7887 0.7891 0.0482 0.0595
0.1842 48.0 12000 0.6063 0.7843 0.3055 2.0346 0.7843 0.7843 0.0480 0.0601
0.1842 49.0 12250 0.6058 0.786 0.3051 2.0319 0.786 0.7861 0.0481 0.0598
0.1829 50.0 12500 0.6048 0.7867 0.3046 2.0167 0.7868 0.7867 0.0468 0.0597

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3
Downloads last month
32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bdpc/resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_kd

Finetuned
(141)
this model