resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_simkd
This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4602
- Accuracy: 0.769
- Brier Loss: 0.3252
- Nll: 2.1002
- F1 Micro: 0.769
- F1 Macro: 0.7667
- Ece: 0.0388
- Aurc: 0.0678
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 250 | 1.0910 | 0.059 | 0.9372 | 6.6175 | 0.059 | 0.0236 | 0.0366 | 0.9408 |
1.0976 | 2.0 | 500 | 1.0013 | 0.0838 | 0.9335 | 4.2665 | 0.0838 | 0.0443 | 0.0391 | 0.9208 |
1.0976 | 3.0 | 750 | 0.9171 | 0.1335 | 0.9308 | 2.8791 | 0.1335 | 0.0985 | 0.0770 | 0.8928 |
0.9312 | 4.0 | 1000 | 0.8701 | 0.1822 | 0.9243 | 2.7464 | 0.1822 | 0.1497 | 0.1142 | 0.8582 |
0.9312 | 5.0 | 1250 | 0.8306 | 0.274 | 0.8635 | 5.8805 | 0.274 | 0.2059 | 0.1347 | 0.6733 |
0.8353 | 6.0 | 1500 | 0.7791 | 0.396 | 0.7897 | 5.0905 | 0.396 | 0.3620 | 0.1762 | 0.4569 |
0.8353 | 7.0 | 1750 | 0.7452 | 0.47 | 0.7200 | 4.3882 | 0.47 | 0.4357 | 0.1822 | 0.3485 |
0.7569 | 8.0 | 2000 | 0.7148 | 0.5635 | 0.6470 | 3.6418 | 0.5635 | 0.5444 | 0.2022 | 0.2564 |
0.7569 | 9.0 | 2250 | 0.6847 | 0.6092 | 0.5626 | 3.0490 | 0.6092 | 0.5904 | 0.1508 | 0.1932 |
0.6953 | 10.0 | 2500 | 0.6552 | 0.648 | 0.5117 | 2.7913 | 0.648 | 0.6309 | 0.1312 | 0.1622 |
0.6953 | 11.0 | 2750 | 0.6369 | 0.662 | 0.4778 | 2.6400 | 0.662 | 0.6468 | 0.0959 | 0.1471 |
0.6357 | 12.0 | 3000 | 0.6074 | 0.6863 | 0.4436 | 2.4974 | 0.6863 | 0.6724 | 0.0734 | 0.1274 |
0.6357 | 13.0 | 3250 | 0.5915 | 0.6975 | 0.4226 | 2.4214 | 0.6975 | 0.6843 | 0.0607 | 0.1173 |
0.5943 | 14.0 | 3500 | 0.5811 | 0.7055 | 0.4080 | 2.3606 | 0.7055 | 0.6923 | 0.0487 | 0.1093 |
0.5943 | 15.0 | 3750 | 0.5694 | 0.7177 | 0.3947 | 2.2689 | 0.7178 | 0.7087 | 0.0553 | 0.1016 |
0.5665 | 16.0 | 4000 | 0.5555 | 0.7225 | 0.3866 | 2.2797 | 0.7225 | 0.7130 | 0.0394 | 0.0981 |
0.5665 | 17.0 | 4250 | 0.5502 | 0.725 | 0.3821 | 2.2616 | 0.7250 | 0.7166 | 0.0441 | 0.0957 |
0.5446 | 18.0 | 4500 | 0.5425 | 0.7345 | 0.3704 | 2.1992 | 0.7345 | 0.7277 | 0.0401 | 0.0893 |
0.5446 | 19.0 | 4750 | 0.5325 | 0.731 | 0.3670 | 2.1856 | 0.731 | 0.7257 | 0.0401 | 0.0872 |
0.5268 | 20.0 | 5000 | 0.5272 | 0.738 | 0.3661 | 2.2345 | 0.738 | 0.7335 | 0.0467 | 0.0865 |
0.5268 | 21.0 | 5250 | 0.5199 | 0.745 | 0.3582 | 2.1676 | 0.745 | 0.7407 | 0.0388 | 0.0827 |
0.5107 | 22.0 | 5500 | 0.5146 | 0.748 | 0.3530 | 2.1726 | 0.748 | 0.7446 | 0.0417 | 0.0802 |
0.5107 | 23.0 | 5750 | 0.5101 | 0.7482 | 0.3516 | 2.1670 | 0.7482 | 0.7445 | 0.0398 | 0.0799 |
0.4973 | 24.0 | 6000 | 0.5076 | 0.7455 | 0.3533 | 2.1814 | 0.7455 | 0.7431 | 0.0396 | 0.0807 |
0.4973 | 25.0 | 6250 | 0.4971 | 0.7512 | 0.3476 | 2.1618 | 0.7513 | 0.7469 | 0.0414 | 0.0780 |
0.484 | 26.0 | 6500 | 0.4934 | 0.753 | 0.3464 | 2.1725 | 0.753 | 0.7497 | 0.0473 | 0.0780 |
0.484 | 27.0 | 6750 | 0.4916 | 0.756 | 0.3415 | 2.1408 | 0.756 | 0.7527 | 0.0480 | 0.0753 |
0.4709 | 28.0 | 7000 | 0.4886 | 0.7582 | 0.3405 | 2.1415 | 0.7582 | 0.7547 | 0.0410 | 0.0746 |
0.4709 | 29.0 | 7250 | 0.4844 | 0.7582 | 0.3377 | 2.1252 | 0.7582 | 0.7556 | 0.0483 | 0.0742 |
0.4617 | 30.0 | 7500 | 0.4831 | 0.757 | 0.3372 | 2.1383 | 0.757 | 0.7540 | 0.0425 | 0.0731 |
0.4617 | 31.0 | 7750 | 0.4781 | 0.759 | 0.3344 | 2.1035 | 0.7590 | 0.7572 | 0.0404 | 0.0718 |
0.4529 | 32.0 | 8000 | 0.4794 | 0.7562 | 0.3375 | 2.1457 | 0.7562 | 0.7545 | 0.0385 | 0.0731 |
0.4529 | 33.0 | 8250 | 0.4777 | 0.7625 | 0.3336 | 2.0834 | 0.7625 | 0.7607 | 0.0433 | 0.0717 |
0.4462 | 34.0 | 8500 | 0.4730 | 0.7598 | 0.3328 | 2.1058 | 0.7598 | 0.7566 | 0.0496 | 0.0716 |
0.4462 | 35.0 | 8750 | 0.4730 | 0.761 | 0.3324 | 2.0874 | 0.761 | 0.7600 | 0.0461 | 0.0712 |
0.4404 | 36.0 | 9000 | 0.4692 | 0.7635 | 0.3309 | 2.0914 | 0.7635 | 0.7616 | 0.0481 | 0.0703 |
0.4404 | 37.0 | 9250 | 0.4691 | 0.7618 | 0.3298 | 2.0866 | 0.7618 | 0.7598 | 0.0457 | 0.0703 |
0.4351 | 38.0 | 9500 | 0.4666 | 0.762 | 0.3294 | 2.0963 | 0.762 | 0.7593 | 0.0428 | 0.0700 |
0.4351 | 39.0 | 9750 | 0.4639 | 0.7668 | 0.3265 | 2.1028 | 0.7668 | 0.7652 | 0.0453 | 0.0688 |
0.4309 | 40.0 | 10000 | 0.4627 | 0.7675 | 0.3287 | 2.0981 | 0.7675 | 0.7658 | 0.0449 | 0.0694 |
0.4309 | 41.0 | 10250 | 0.4634 | 0.765 | 0.3264 | 2.1151 | 0.765 | 0.7631 | 0.0441 | 0.0684 |
0.4269 | 42.0 | 10500 | 0.4626 | 0.7658 | 0.3260 | 2.0977 | 0.7658 | 0.7644 | 0.0414 | 0.0684 |
0.4269 | 43.0 | 10750 | 0.4609 | 0.7672 | 0.3259 | 2.0944 | 0.7672 | 0.7656 | 0.0420 | 0.0681 |
0.4248 | 44.0 | 11000 | 0.4616 | 0.7662 | 0.3253 | 2.0942 | 0.7663 | 0.7652 | 0.0458 | 0.0678 |
0.4248 | 45.0 | 11250 | 0.4605 | 0.7658 | 0.3258 | 2.1447 | 0.7658 | 0.7629 | 0.0408 | 0.0678 |
0.4233 | 46.0 | 11500 | 0.4604 | 0.7662 | 0.3266 | 2.1007 | 0.7663 | 0.7640 | 0.0493 | 0.0686 |
0.4233 | 47.0 | 11750 | 0.4601 | 0.7652 | 0.3252 | 2.0893 | 0.7652 | 0.7633 | 0.0463 | 0.0684 |
0.4221 | 48.0 | 12000 | 0.4600 | 0.7645 | 0.3255 | 2.0695 | 0.7645 | 0.7629 | 0.0472 | 0.0683 |
0.4221 | 49.0 | 12250 | 0.4605 | 0.7662 | 0.3257 | 2.0778 | 0.7663 | 0.7640 | 0.0425 | 0.0682 |
0.4211 | 50.0 | 12500 | 0.4602 | 0.769 | 0.3252 | 2.1002 | 0.769 | 0.7667 | 0.0388 | 0.0678 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.2.0.dev20231002
- Datasets 2.7.1
- Tokenizers 0.13.3
- Downloads last month
- 37
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for bdpc/resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_simkd
Base model
microsoft/resnet-50