belisards/congretimbau

This model is a fine-tuned version of belisards/congretimbau on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1076
  • Accuracy: 0.8503
  • F1: 0.7896
  • Recall: 0.7959
  • Precision: 0.7839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 5151
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.1548 1.0 35 0.1456 0.7411 0.4571 0.5112 0.6227
0.1572 2.0 70 0.1354 0.7411 0.6588 0.6570 0.6607
0.1305 3.0 105 0.1212 0.7768 0.6402 0.6251 0.7194
0.1069 4.0 140 0.1155 0.8393 0.7857 0.7794 0.7930
0.0937 5.0 175 0.1216 0.8304 0.7764 0.7734 0.7798
0.0639 6.0 210 0.1257 0.8482 0.7899 0.7742 0.8125
0.0437 7.0 245 0.1610 0.8393 0.7614 0.7345 0.8195
0.0254 8.0 280 0.2101 0.8482 0.7842 0.7630 0.8197
0.0067 9.0 315 0.2555 0.8482 0.7899 0.7742 0.8125

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for belisards/posicao_tema

Finetuned
(5)
this model