|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
# Usage Example |
|
``` |
|
import requests |
|
from PIL import Image |
|
from transformers import MllamaForConditionalGeneration, AutoProcessor, BitsAndBytesConfig |
|
|
|
|
|
def get_image_description(model, processor, image, initial_prompt='', max_new_tokens=70, *args, **kwargs): |
|
initial_prompt = initial_prompt if initial_prompt != '' else "How would you describe the contents of this photo?" |
|
messages = [ |
|
{"role": "user", "content": [ |
|
{"type": "image"}, |
|
{"type": "text", "text": initial_prompt} |
|
]} |
|
] |
|
input_text = processor.apply_chat_template( |
|
messages, add_generation_prompt=True) |
|
inputs = processor( |
|
image, |
|
input_text, |
|
add_special_tokens=False, |
|
return_tensors="pt" |
|
).to(model.device) |
|
output = model.generate(**inputs, max_new_tokens=max_new_tokens) |
|
return processor.decode(output[0]) |
|
|
|
|
|
def load_model(model_id="belkhir-nacim/l32vision_instruct"): |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, # Enable 4-bit quantization |
|
) |
|
model = MllamaForConditionalGeneration.from_pretrained( |
|
model_id, device_map="auto",quantization_config=bnb_config) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
return model, processor |
|
|
|
|
|
model, processor = load_model() |
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
result = get_image_description( |
|
model, processor, image, initial_prompt="Tell me what do you see in the image. use keywords to describe") |
|
print(result) |
|
|
|
``` |
|
|
|
|
|
|