|
--- |
|
base_model: klue/roberta-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: pogny-16-0.00002 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bella05/huggingface/runs/gi9imxak) |
|
# pogny-16-0.00002 |
|
|
|
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9252 |
|
- Accuracy: 0.7676 |
|
- F1: 0.7648 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 0.6579 | 1.0 | 4818 | 0.6370 | 0.7627 | 0.7604 | |
|
| 0.5424 | 2.0 | 9636 | 0.6263 | 0.7671 | 0.7636 | |
|
| 0.4158 | 3.0 | 14454 | 0.6761 | 0.7721 | 0.7690 | |
|
| 0.3116 | 4.0 | 19272 | 0.7796 | 0.7705 | 0.7680 | |
|
| 0.221 | 5.0 | 24090 | 1.0186 | 0.7640 | 0.7616 | |
|
| 0.1605 | 6.0 | 28908 | 1.3264 | 0.7679 | 0.7648 | |
|
| 0.122 | 7.0 | 33726 | 1.5300 | 0.7685 | 0.7642 | |
|
| 0.0808 | 8.0 | 38544 | 1.7068 | 0.7594 | 0.7574 | |
|
| 0.0606 | 9.0 | 43362 | 1.8555 | 0.7632 | 0.7613 | |
|
| 0.0249 | 10.0 | 48180 | 1.9252 | 0.7676 | 0.7648 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.2.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|