File size: 1,486 Bytes
7fa05bb 0ce50fb 7fa05bb d5f60fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: cc-by-4.0
datasets:
- bene-ges/spellmapper_en_train
language:
- en
library_name: nemo
---
# SpellMapper - Spellchecking ASR Customization Model
<style>
img {
display: inline;
}
</style>
| [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
This model is an alternative to word boosting/shallow fusion approaches:
- does not require retraining ASR model;
- does not require beam-search/language model (LM);
- can be applied on top of any English ASR model output;
Paper: [SpellMapper: A non-autoregressive neural spellchecker for ASR customization with candidate retrieval based on n-gram mappings](https://arxiv.org/abs/2306.02317)
## How to Use this Model
To use this model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo).
See [Bash-script](https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/spellchecking_asr_customization/run_infer.sh) with example of inference pipeline.
Or play with [Tutorial](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/nlp/SpellMapper_English_ASR_Customization.ipynb).
## Citation
```bibtex
@misc{antonova2023spellmapper,
title={SpellMapper: A non-autoregressive neural spellchecker for ASR customization with candidate retrieval based on n-gram mappings},
author={Alexandra Antonova and Evelina Bakhturina and Boris Ginsburg},
year={2023},
eprint={2306.02317},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|