Jo Kristian Bergum
Add model card
b4afdfd
|
raw
history blame
1.94 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: xtremedistil-l6-h384-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.928
---
# xtremedistil-l6-h384-emotion
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.928
This model can be quantized to int8 and retain accuracy
- Accuracy 0.912
<pre>
import transformers
import transformers.convert_graph_to_onnx as onnx_convert
from pathlib import Path
pipeline = transformers.pipeline("text-classification",model=model,tokenizer=tokenizer)
onnx_convert.convert_pytorch(pipeline, opset=11, output=Path("xtremedistil-l6-h384-emotion.onnx"), use_external_format=False)
from onnxruntime.quantization import quantize_dynamic, QuantType
quantize_dynamic("xtremedistil-l6-h384-emotion.onnx", "xtremedistil-l6-h384-emotion-int8.onnx",
weight_type=QuantType.QUInt8)
</pre>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- num_epochs: 14
### Training results
<pre>
Epoch Training Loss Validation Loss Accuracy
1 No log 0.960511 0.689000
2 No log 0.620671 0.824000
3 No log 0.435741 0.880000
4 0.797900 0.341771 0.896000
5 0.797900 0.294780 0.916000
6 0.797900 0.250572 0.918000
7 0.797900 0.232976 0.924000
8 0.277300 0.216347 0.924000
9 0.277300 0.202306 0.930500
10 0.277300 0.192530 0.930000
11 0.277300 0.192500 0.926500
12 0.181700 0.187347 0.928500
13 0.181700 0.185896 0.929500
14 0.181700 0.185154 0.928000
</pre>