|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- emotion |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: xtremedistil-l6-h384-emotion |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: emotion |
|
type: emotion |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.928 |
|
--- |
|
# xtremedistil-l6-h384-emotion |
|
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the emotion dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.928 |
|
|
|
This model can be quantized to int8 and retain accuracy |
|
- Accuracy 0.912 |
|
|
|
<pre> |
|
import transformers |
|
import transformers.convert_graph_to_onnx as onnx_convert |
|
from pathlib import Path |
|
|
|
pipeline = transformers.pipeline("text-classification",model=model,tokenizer=tokenizer) |
|
onnx_convert.convert_pytorch(pipeline, opset=11, output=Path("xtremedistil-l6-h384-emotion.onnx"), use_external_format=False) |
|
from onnxruntime.quantization import quantize_dynamic, QuantType |
|
quantize_dynamic("xtremedistil-l6-h384-emotion.onnx", "xtremedistil-l6-h384-emotion-int8.onnx", |
|
weight_type=QuantType.QUInt8) |
|
</pre> |
|
|
|
|
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- num_epochs: 14 |
|
### Training results |
|
<pre> |
|
Epoch Training Loss Validation Loss Accuracy |
|
1 No log 0.960511 0.689000 |
|
2 No log 0.620671 0.824000 |
|
3 No log 0.435741 0.880000 |
|
4 0.797900 0.341771 0.896000 |
|
5 0.797900 0.294780 0.916000 |
|
6 0.797900 0.250572 0.918000 |
|
7 0.797900 0.232976 0.924000 |
|
8 0.277300 0.216347 0.924000 |
|
9 0.277300 0.202306 0.930500 |
|
10 0.277300 0.192530 0.930000 |
|
11 0.277300 0.192500 0.926500 |
|
12 0.181700 0.187347 0.928500 |
|
13 0.181700 0.185896 0.929500 |
|
14 0.181700 0.185154 0.928000 |
|
</pre> |