IceBERT-finetuned-ner
This model is a fine-tuned version of vesteinn/IceBERT on the mim_gold_ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0783
- Precision: 0.8873
- Recall: 0.8627
- F1: 0.8748
- Accuracy: 0.9848
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0539 | 1.0 | 2904 | 0.0768 | 0.8732 | 0.8453 | 0.8590 | 0.9833 |
0.0281 | 2.0 | 5808 | 0.0737 | 0.8781 | 0.8492 | 0.8634 | 0.9838 |
0.0166 | 3.0 | 8712 | 0.0783 | 0.8873 | 0.8627 | 0.8748 | 0.9848 |
Framework versions
- Transformers 4.11.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- Precision on mim_gold_nerself-reported0.887
- Recall on mim_gold_nerself-reported0.863
- F1 on mim_gold_nerself-reported0.875
- Accuracy on mim_gold_nerself-reported0.985