|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: What's your favorite way to learn? Through books, videos, or experiments? |
|
Experiments. I like seeing science in action. |
|
- text: Can you name a living organism's basic needs? Food, water... Can we change |
|
the subject? |
|
- text: What do you find fascinating about the human body? That our brain works like |
|
a supercomputer. |
|
- text: What's something you learned about in technology? We learned about coding. |
|
I made a simple game. |
|
- text: Do you know how to code? Nope. Sounds complicated. |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: BAAI/bge-small-en-v1.5 |
|
--- |
|
|
|
# SetFit with BAAI/bge-small-en-v1.5 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| negative | <ul><li>'What did you learn in school today? Nothing much, just the usual stuff.'</li><li>"Do you know the capital of France? Don't know, don't care."</li><li>"Can you tell me what 2 + 2 equals? Guess it's 4, but why does it matter?"</li></ul> | |
|
| positive | <ul><li>"What's your favorite subject? Science, because I love experiments."</li><li>'Can you tell me the planets in order? Sure, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Pluto used to be one, but not anymore.'</li><li>"Do you enjoy math class? Yeah, it's cool, especially when we do geometry."</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("bew/setfit-engagement-model-basic") |
|
# Run inference |
|
preds = model("Do you know how to code? Nope. Sounds complicated.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 6 | 15.0470 | 26 | |
|
|
|
| Label | Training Sample Count | |
|
|:---------|:----------------------| |
|
| negative | 79 | |
|
| positive | 70 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (32, 32) |
|
- num_epochs: (10, 10) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0028 | 1 | 0.2418 | - | |
|
| 0.1416 | 50 | 0.2311 | - | |
|
| 0.2833 | 100 | 0.2425 | - | |
|
| 0.4249 | 150 | 0.0572 | - | |
|
| 0.5666 | 200 | 0.0049 | - | |
|
| 0.7082 | 250 | 0.0031 | - | |
|
| 0.8499 | 300 | 0.0019 | - | |
|
| 0.9915 | 350 | 0.0018 | - | |
|
| 1.1331 | 400 | 0.0015 | - | |
|
| 1.2748 | 450 | 0.001 | - | |
|
| 1.4164 | 500 | 0.0011 | - | |
|
| 1.5581 | 550 | 0.0008 | - | |
|
| 1.6997 | 600 | 0.0008 | - | |
|
| 1.8414 | 650 | 0.0007 | - | |
|
| 1.9830 | 700 | 0.0008 | - | |
|
| 2.1246 | 750 | 0.0007 | - | |
|
| 2.2663 | 800 | 0.0005 | - | |
|
| 2.4079 | 850 | 0.0006 | - | |
|
| 2.5496 | 900 | 0.0005 | - | |
|
| 2.6912 | 950 | 0.0005 | - | |
|
| 2.8329 | 1000 | 0.0005 | - | |
|
| 2.9745 | 1050 | 0.0005 | - | |
|
| 3.1161 | 1100 | 0.0005 | - | |
|
| 3.2578 | 1150 | 0.0005 | - | |
|
| 3.3994 | 1200 | 0.0004 | - | |
|
| 3.5411 | 1250 | 0.0004 | - | |
|
| 3.6827 | 1300 | 0.0004 | - | |
|
| 3.8244 | 1350 | 0.0004 | - | |
|
| 3.9660 | 1400 | 0.0004 | - | |
|
| 4.1076 | 1450 | 0.0004 | - | |
|
| 4.2493 | 1500 | 0.0003 | - | |
|
| 4.3909 | 1550 | 0.0004 | - | |
|
| 4.5326 | 1600 | 0.0004 | - | |
|
| 4.6742 | 1650 | 0.0003 | - | |
|
| 4.8159 | 1700 | 0.0003 | - | |
|
| 4.9575 | 1750 | 0.0004 | - | |
|
| 5.0992 | 1800 | 0.0003 | - | |
|
| 5.2408 | 1850 | 0.0003 | - | |
|
| 5.3824 | 1900 | 0.0003 | - | |
|
| 5.5241 | 1950 | 0.0003 | - | |
|
| 5.6657 | 2000 | 0.0003 | - | |
|
| 5.8074 | 2050 | 0.0003 | - | |
|
| 5.9490 | 2100 | 0.0003 | - | |
|
| 6.0907 | 2150 | 0.0003 | - | |
|
| 6.2323 | 2200 | 0.0003 | - | |
|
| 6.3739 | 2250 | 0.0003 | - | |
|
| 6.5156 | 2300 | 0.0003 | - | |
|
| 6.6572 | 2350 | 0.0003 | - | |
|
| 6.7989 | 2400 | 0.0002 | - | |
|
| 6.9405 | 2450 | 0.0003 | - | |
|
| 7.0822 | 2500 | 0.0003 | - | |
|
| 7.2238 | 2550 | 0.0003 | - | |
|
| 7.3654 | 2600 | 0.0003 | - | |
|
| 7.5071 | 2650 | 0.0003 | - | |
|
| 7.6487 | 2700 | 0.0003 | - | |
|
| 7.7904 | 2750 | 0.0003 | - | |
|
| 7.9320 | 2800 | 0.0003 | - | |
|
| 8.0737 | 2850 | 0.0003 | - | |
|
| 8.2153 | 2900 | 0.0003 | - | |
|
| 8.3569 | 2950 | 0.0003 | - | |
|
| 8.4986 | 3000 | 0.0002 | - | |
|
| 8.6402 | 3050 | 0.0003 | - | |
|
| 8.7819 | 3100 | 0.0003 | - | |
|
| 8.9235 | 3150 | 0.0003 | - | |
|
| 9.0652 | 3200 | 0.0003 | - | |
|
| 9.2068 | 3250 | 0.0002 | - | |
|
| 9.3484 | 3300 | 0.0003 | - | |
|
| 9.4901 | 3350 | 0.0002 | - | |
|
| 9.6317 | 3400 | 0.0003 | - | |
|
| 9.7734 | 3450 | 0.0003 | - | |
|
| 9.9150 | 3500 | 0.0002 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.3.1 |
|
- Transformers: 4.35.2 |
|
- PyTorch: 2.1.0+cu121 |
|
- Datasets: 2.17.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |