metadata
language:
- en
thumbnail: >-
https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
tags:
- text-classification
- emotion
- pytorch
license: apache-2.0
datasets:
- emotion
metrics:
- Accuracy, F1 Score
Distilbert-base-uncased-emotion
Model description:
Distilbert-base-uncased
finetuned on the emotion dataset using HuggingFace Trainer.
learning rate 2e-5,
batch size 64,
num_train_epochs=8,
How to Use the model:
from transformers import pipeline
classifier = pipeline("sentiment-analysis",model='bhadresh-savani/distilbert-base-uncased-emotion')
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use")
print(prediction)
Dataset:
Training procedure
Eval results
{
'test_accuracy': 0.938,
'test_f1': 0.937932884041714,
'test_loss': 0.1472451239824295,
'test_mem_cpu_alloc_delta': 0,
'test_mem_cpu_peaked_delta': 0,
'test_mem_gpu_alloc_delta': 0,
'test_mem_gpu_peaked_delta': 163454464,
'test_runtime': 5.0164,
'test_samples_per_second': 398.69
}