bhadresh-savani's picture
Add evaluation results on the default config of emotion (#1)
11350fa
|
raw
history blame
3.15 kB
---
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: bertweet-base-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9365
- name: F1
type: f1
value: 0.9371
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.923
verified: true
- name: Precision Macro
type: precision
value: 0.8676576686813523
verified: true
- name: Precision Micro
type: precision
value: 0.923
verified: true
- name: Precision Weighted
type: precision
value: 0.9268406401714973
verified: true
- name: Recall Macro
type: recall
value: 0.8945488803260702
verified: true
- name: Recall Micro
type: recall
value: 0.923
verified: true
- name: Recall Weighted
type: recall
value: 0.923
verified: true
- name: F1 Macro
type: f1
value: 0.8798961895301041
verified: true
- name: F1 Micro
type: f1
value: 0.923
verified: true
- name: F1 Weighted
type: f1
value: 0.9241278880972197
verified: true
- name: loss
type: loss
value: 0.24626904726028442
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1995
- Accuracy: 0.9365
- F1: 0.9371
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.475 | 1.0 | 503 | 0.2171 | 0.928 | 0.9292 |
| 0.1235 | 2.0 | 1006 | 0.1764 | 0.9365 | 0.9372 |
| 0.0802 | 3.0 | 1509 | 0.1788 | 0.938 | 0.9388 |
| 0.0531 | 4.0 | 2012 | 0.2005 | 0.938 | 0.9388 |
| 0.0367 | 5.0 | 2515 | 0.1995 | 0.9365 | 0.9371 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3