distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8405
  • Accuracy: {'accuracy': 0.898}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.7051 {'accuracy': 0.761}
0.4561 2.0 500 0.9751 {'accuracy': 0.793}
0.4561 3.0 750 0.4668 {'accuracy': 0.882}
0.2196 4.0 1000 0.5190 {'accuracy': 0.895}
0.2196 5.0 1250 0.6079 {'accuracy': 0.905}
0.0804 6.0 1500 0.7639 {'accuracy': 0.895}
0.0804 7.0 1750 0.8768 {'accuracy': 0.892}
0.0119 8.0 2000 0.8436 {'accuracy': 0.893}
0.0119 9.0 2250 0.8417 {'accuracy': 0.897}
0.001 10.0 2500 0.8405 {'accuracy': 0.898}

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
15
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for bhargavi143/distilbert-base-uncased-lora-text-classification

Adapter
(225)
this model