distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8405
- Accuracy: {'accuracy': 0.898}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.7051 | {'accuracy': 0.761} |
0.4561 | 2.0 | 500 | 0.9751 | {'accuracy': 0.793} |
0.4561 | 3.0 | 750 | 0.4668 | {'accuracy': 0.882} |
0.2196 | 4.0 | 1000 | 0.5190 | {'accuracy': 0.895} |
0.2196 | 5.0 | 1250 | 0.6079 | {'accuracy': 0.905} |
0.0804 | 6.0 | 1500 | 0.7639 | {'accuracy': 0.895} |
0.0804 | 7.0 | 1750 | 0.8768 | {'accuracy': 0.892} |
0.0119 | 8.0 | 2000 | 0.8436 | {'accuracy': 0.893} |
0.0119 | 9.0 | 2250 | 0.8417 | {'accuracy': 0.897} |
0.001 | 10.0 | 2500 | 0.8405 | {'accuracy': 0.898} |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3
- Downloads last month
- 15
Model tree for bhargavi143/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased