File size: 2,233 Bytes
d09d390
0ae235a
 
 
 
 
 
 
 
 
 
d09d390
 
0ae235a
 
d09d390
0ae235a
d09d390
0ae235a
 
 
 
d09d390
0ae235a
d09d390
0ae235a
d09d390
0ae235a
d09d390
0ae235a
d09d390
0ae235a
d09d390
0ae235a
d09d390
0ae235a
d09d390
0ae235a
d09d390
0ae235a
 
 
 
 
 
 
 
d09d390
0ae235a
d09d390
0ae235a
 
 
 
 
 
 
 
 
 
 
 
d09d390
 
0ae235a
d09d390
0ae235a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: peft
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-lora-text-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8405
- Accuracy: {'accuracy': 0.898}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy            |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log        | 1.0   | 250  | 0.7051          | {'accuracy': 0.761} |
| 0.4561        | 2.0   | 500  | 0.9751          | {'accuracy': 0.793} |
| 0.4561        | 3.0   | 750  | 0.4668          | {'accuracy': 0.882} |
| 0.2196        | 4.0   | 1000 | 0.5190          | {'accuracy': 0.895} |
| 0.2196        | 5.0   | 1250 | 0.6079          | {'accuracy': 0.905} |
| 0.0804        | 6.0   | 1500 | 0.7639          | {'accuracy': 0.895} |
| 0.0804        | 7.0   | 1750 | 0.8768          | {'accuracy': 0.892} |
| 0.0119        | 8.0   | 2000 | 0.8436          | {'accuracy': 0.893} |
| 0.0119        | 9.0   | 2250 | 0.8417          | {'accuracy': 0.897} |
| 0.001         | 10.0  | 2500 | 0.8405          | {'accuracy': 0.898} |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3