bhargob11's picture
End of training
7bbf1f3 verified
metadata
base_model: google/vit-base-patch16-224-in21k
datasets:
  - imagefolder
library_name: peft
license: apache-2.0
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-qlora-houseplant
    results: []

vit-base-patch16-224-in21k-finetuned-qlora-houseplant

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6871
  • Accuracy: 0.5306

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 7 0.6917 0.5
0.688 2.0 14 0.6908 0.5204
0.6843 3.0 21 0.6899 0.5204
0.6843 4.0 28 0.6892 0.5204
0.6871 5.0 35 0.6886 0.5204
0.6833 6.0 42 0.6880 0.5204
0.6833 7.0 49 0.6876 0.5204
0.6812 8.0 56 0.6873 0.5204
0.6807 9.0 63 0.6871 0.5306
0.6829 10.0 70 0.6870 0.5306

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.45.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1