Dataset used
Labels
Fake news: 1
Real news: 0
Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import torch
config = AutoConfig.from_pretrained("bhavitvyamalik/fake-news_xtremedistil-l6-h256-uncased")
model = AutoModelForSequenceClassification.from_pretrained("bhavitvyamalik/fake-news_xtremedistil-l6-h256-uncased", config=config)
tokenizer = AutoTokenizer.from_pretrained("microsoft/xtremedistil-l6-h256-uncased", usefast=True)
text = "According to reports by Fox News, Biden is the President of the USA"
encode = tokenizer(text, max_length=512, truncation=True, padding="max_length", return_tensors="pt")
output = model(**encode)
print(torch.argmax(output["logits"]))
Performance on test data
'test/accuracy': 0.9977836608886719,
'test/aucroc': 0.9999998807907104,
'test/f1': 0.9976308941841125,
'test/loss': 0.00828308891505003
Run can be tracked here
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.