File size: 7,597 Bytes
ead155c
 
 
 
 
 
 
023985b
 
 
 
 
13ff335
ead155c
023985b
 
 
 
 
ead155c
023985b
ead155c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023985b
ead155c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023985b
 
ead155c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ff335
ead155c
 
 
023985b
ead155c
023985b
 
 
 
 
 
 
 
ead155c
023985b
ead155c
023985b
 
 
 
 
 
 
 
 
 
ead155c
023985b
ead155c
 
023985b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead155c
 
 
023985b
ead155c
023985b
ead155c
 
 
 
 
 
 
 
 
 
023985b
 
ead155c
 
 
 
 
023985b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- kornlu
language:
- ko
license: cc-by-4.0
---

# bi-matrix/gmatrix-embedding

ํ•ด๋‹น ๋ชจ๋ธ์€ [KF-DeBERTa](https://huggingface.co/kakaobank/kf-deberta-base) ๋ชจ๋ธ๊ณผ KorSTS, KorNLI ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, sentence-transformers์˜ ๊ณต์‹ ๋ฌธ์„œ ๋‚ด ์†Œ๊ฐœ๋œ [continue-learning](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
1. NLI ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด nagative sampling ํ›„ MultipleNegativeRankingLoss ํ™œ์šฉ ๋ฐ STS ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด CosineSimilarityLoss๋ฅผ ํ™œ์šฉํ•˜์—ฌ Multi-task Learning ํ•™์Šต 10epoch ์ง„ํ–‰
2. Learning Rate๋ฅผ 1e-06์œผ๋กœ ์ค„์—ฌ์„œ 4epoch ์ถ”๊ฐ€ Multi-task ํ•™์Šต ์ง„ํ–‰

---
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer("bi-matrix/gmatrix-embedding")
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("bi-matrix/gmatrix-embedding")
model = AutoModel.from_pretrained("bi-matrix/gmatrix-embedding")

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```


## Evaluation Results

<!--- Describe how your model was evaluated -->

KorSTS ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ‰๊ฐ€ํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.

- Cosine Pearson: 85.77
- Cosine Spearman: 86.30
- Manhattan Pearson: 84.84
- Manhattan Spearman: 85.33
- Euclidean Pearson: 84.82
- Euclidean Spearman: 85.29
- Dot Pearson: 83.19
- Dot Spearman: 83.19

<br>

|model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman|
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:|
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**85.77**|**86.30**|**84.82**|**85.29**|**84.84**|**85.33**|**83.19**|**83.19**|
|[kf-deberta-multitask](https://huggingface.co/upskyy/kf-deberta-multitask)|85.75|86.25|84.79|85.25|84.80|85.27|82.93|82.86|
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|84.77|85.6|83.71|84.40|83.70|84.38|82.42|82.33|
|[ko-sbert-multitask](https://huggingface.co/jhgan/ko-sbert-multitask)|84.13|84.71|82.42|82.66|82.41|82.69|80.05|79.69|
|[ko-sroberta-base-nli](https://huggingface.co/jhgan/ko-sroberta-nli)|82.83|83.85|82.87|83.29|82.88|83.28|80.34|79.69|
|[ko-sbert-nli](https://huggingface.co/jhgan/ko-sbert-multitask)|82.24|83.16|82.19|82.31|82.18|82.3|79.3|78.78|
|[ko-sroberta-sts](https://huggingface.co/jhgan/ko-sroberta-sts)|81.84|81.82|81.15|81.25|81.14|81.25|79.09|78.54|
|[ko-sbert-sts](https://huggingface.co/jhgan/ko-sbert-sts)|81.55|81.23|79.94|79.79|79.9|79.75|76.02|75.31|

<br>


<!--- Describe how your model was evaluated -->

G-MATRIX Embedding ๋ฐ์ดํ„ฐ์…‹ ์ธก์ • ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.
์‚ฌ๋žŒ 3๋ช…์ด์„œ 0~5์ ์œผ๋กœ ๋‘ ๋ฌธ์žฅ๊ฐ„์˜ ์œ ์‚ฌ๋„๋ฅผ ์ธก์ •ํ•˜์—ฌ ์ ์ˆ˜๋ฅผ ๋‚ด๊ณ  ํ‰๊ท ์„ ๊ตฌํ•˜์—ฌ ๊ฐ ๋ชจ๋ธ์˜ ์ž„๋ฒ ๋”ฉ๊ฐ’์„ ํ†ตํ•ด

์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„, ์œ ํด๋ฆฌ๋””์•ˆ ๊ฑฐ๋ฆฌ, ๋งจํ•˜ํƒ„ ๊ฑฐ๋ฆฌ, Dot-product๋ฅผ ๊ตฌํ•˜์—ฌ ํ”ผ์–ด์Šจ, ์Šคํ”ผ์–ด๋งŒ ์ƒ๊ด€๊ณ„์ˆ˜๋ฅผ ๊ตฌํ•œ ๊ฐ’์ž…๋‹ˆ๋‹ค.

- Cosine Pearson: 75.86
- Cosine Spearman: 65.75
- Manhattan Pearson: 72.65
- Manhattan Spearman: 65.20
- Euclidean Pearson: 72.48
- Euclidean Spearman: 65.32
- Dot Pearson: 64.71
- Dot Spearman: 53.90

<br>

model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman|
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:|
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**75.86**|**65.75**|**72.65**|**65.20**|**72.48**|**65.32**|**64.71**|**53.90**|
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|71.78|63.16|70.80|63.47|70.89|63.72|53.57|44.23|
|[bge-m3](https://huggingface.co/BAAI/bge-m3)|64.15|60.65|61.88|60.68|61.88|60.19|64.16|60.71|

<br>



![image/png](https://cdn-uploads.huggingface.co/production/uploads/6350f6750b94548566da3279/CcK0QL3oQAz7sJOCtH6PB.png)

<br>

## G-MATRIX Embedding ๋ ˆ์ด๋ธ”๋ง ํŒ๋‹จ ๊ธฐ์ค€ (KLUE-RoBERTa์˜ STS ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์ฐธ๊ณ )
1. ๋‘ ๋ฌธ์žฅ์˜ ์œ ์‚ฌํ•œ ์ •๋„๋ฅผ ๋ณด๊ณ  0~5์ ์œผ๋กœ ํŒ๋‹จ
2. ๋งž์ถค๋ฒ•, ๋„์–ด์“ฐ๊ธฐ, ์˜จ์ ์ด๋‚˜ ์‰ผํ‘œ ์ฐจ์ด๋Š” ํŒ๋‹จ ๋Œ€์ƒ์ด ์•„๋‹˜
3. ๋ฌธ์žฅ์˜ ์˜๋„, ํ‘œํ˜„์ด ๋‹ด๊ณ  ์žˆ๋Š” ์˜๋ฏธ๋ฅผ ๋น„๊ต
4. ๋‘ ๋ฌธ์žฅ์— ๊ณตํ†ต์ ์œผ๋กœ ์‚ฌ์šฉ๋œ ๋‹จ์–ด์˜ ์œ ๋ฌด๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด ์•„๋‹Œ, ๋ฌธ์žฅ์˜ ์˜๋ฏธ๊ฐ€ ์œ ์‚ฌํ•œ์ง€๋ฅผ ๋น„๊ต
5. 0์€ ์˜๋ฏธ์  ์œ ์‚ฌ์„ฑ์ด ์—†๋Š” ๊ฒฝ์šฐ์ด๊ณ , 5๋Š” ์˜๋ฏธ์ ์œผ๋กœ ๋™๋“ฑํ•จ์„ ๋œปํ•จ



## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 329 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` 


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: DeBERTaV2Model 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->
[MINSANG SONG] at [BI-Matrix](https://www.bimatrix.co.kr/)