File size: 7,597 Bytes
ead155c 023985b 13ff335 ead155c 023985b ead155c 023985b ead155c 023985b ead155c 023985b ead155c 13ff335 ead155c 023985b ead155c 023985b ead155c 023985b ead155c 023985b ead155c 023985b ead155c 023985b ead155c 023985b ead155c 023985b ead155c 023985b ead155c 023985b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- kornlu
language:
- ko
license: cc-by-4.0
---
# bi-matrix/gmatrix-embedding
ํด๋น ๋ชจ๋ธ์ [KF-DeBERTa](https://huggingface.co/kakaobank/kf-deberta-base) ๋ชจ๋ธ๊ณผ KorSTS, KorNLI ๋ฐ์ดํฐ์
์ ํ์ฉํ์์ผ๋ฉฐ, sentence-transformers์ ๊ณต์ ๋ฌธ์ ๋ด ์๊ฐ๋ [continue-learning](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) ๋ฐฉ๋ฒ์ ํตํด ์๋์ ๊ฐ์ด ํ์ต๋์์ต๋๋ค.
1. NLI ๋ฐ์ดํฐ์
์ ํตํด nagative sampling ํ MultipleNegativeRankingLoss ํ์ฉ ๋ฐ STS ๋ฐ์ดํฐ์
์ ํตํด CosineSimilarityLoss๋ฅผ ํ์ฉํ์ฌ Multi-task Learning ํ์ต 10epoch ์งํ
2. Learning Rate๋ฅผ 1e-06์ผ๋ก ์ค์ฌ์ 4epoch ์ถ๊ฐ Multi-task ํ์ต ์งํ
---
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("bi-matrix/gmatrix-embedding")
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("bi-matrix/gmatrix-embedding")
model = AutoModel.from_pretrained("bi-matrix/gmatrix-embedding")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
KorSTS ํ๊ฐ ๋ฐ์ดํฐ์
์ผ๋ก ํ๊ฐํ ๊ฒฐ๊ณผ์
๋๋ค.
- Cosine Pearson: 85.77
- Cosine Spearman: 86.30
- Manhattan Pearson: 84.84
- Manhattan Spearman: 85.33
- Euclidean Pearson: 84.82
- Euclidean Spearman: 85.29
- Dot Pearson: 83.19
- Dot Spearman: 83.19
<br>
|model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman|
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:|
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**85.77**|**86.30**|**84.82**|**85.29**|**84.84**|**85.33**|**83.19**|**83.19**|
|[kf-deberta-multitask](https://huggingface.co/upskyy/kf-deberta-multitask)|85.75|86.25|84.79|85.25|84.80|85.27|82.93|82.86|
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|84.77|85.6|83.71|84.40|83.70|84.38|82.42|82.33|
|[ko-sbert-multitask](https://huggingface.co/jhgan/ko-sbert-multitask)|84.13|84.71|82.42|82.66|82.41|82.69|80.05|79.69|
|[ko-sroberta-base-nli](https://huggingface.co/jhgan/ko-sroberta-nli)|82.83|83.85|82.87|83.29|82.88|83.28|80.34|79.69|
|[ko-sbert-nli](https://huggingface.co/jhgan/ko-sbert-multitask)|82.24|83.16|82.19|82.31|82.18|82.3|79.3|78.78|
|[ko-sroberta-sts](https://huggingface.co/jhgan/ko-sroberta-sts)|81.84|81.82|81.15|81.25|81.14|81.25|79.09|78.54|
|[ko-sbert-sts](https://huggingface.co/jhgan/ko-sbert-sts)|81.55|81.23|79.94|79.79|79.9|79.75|76.02|75.31|
<br>
<!--- Describe how your model was evaluated -->
G-MATRIX Embedding ๋ฐ์ดํฐ์
์ธก์ ๊ฒฐ๊ณผ์
๋๋ค.
์ฌ๋ 3๋ช
์ด์ 0~5์ ์ผ๋ก ๋ ๋ฌธ์ฅ๊ฐ์ ์ ์ฌ๋๋ฅผ ์ธก์ ํ์ฌ ์ ์๋ฅผ ๋ด๊ณ ํ๊ท ์ ๊ตฌํ์ฌ ๊ฐ ๋ชจ๋ธ์ ์๋ฒ ๋ฉ๊ฐ์ ํตํด
์ฝ์ฌ์ธ ์ ์ฌ๋, ์ ํด๋ฆฌ๋์ ๊ฑฐ๋ฆฌ, ๋งจํํ ๊ฑฐ๋ฆฌ, Dot-product๋ฅผ ๊ตฌํ์ฌ ํผ์ด์จ, ์คํผ์ด๋ง ์๊ด๊ณ์๋ฅผ ๊ตฌํ ๊ฐ์
๋๋ค.
- Cosine Pearson: 75.86
- Cosine Spearman: 65.75
- Manhattan Pearson: 72.65
- Manhattan Spearman: 65.20
- Euclidean Pearson: 72.48
- Euclidean Spearman: 65.32
- Dot Pearson: 64.71
- Dot Spearman: 53.90
<br>
model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman|
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:|
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**75.86**|**65.75**|**72.65**|**65.20**|**72.48**|**65.32**|**64.71**|**53.90**|
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|71.78|63.16|70.80|63.47|70.89|63.72|53.57|44.23|
|[bge-m3](https://huggingface.co/BAAI/bge-m3)|64.15|60.65|61.88|60.68|61.88|60.19|64.16|60.71|
<br>

<br>
## G-MATRIX Embedding ๋ ์ด๋ธ๋ง ํ๋จ ๊ธฐ์ค (KLUE-RoBERTa์ STS ๋ฐ์ดํฐ ์์ฑ ์ฐธ๊ณ )
1. ๋ ๋ฌธ์ฅ์ ์ ์ฌํ ์ ๋๋ฅผ ๋ณด๊ณ 0~5์ ์ผ๋ก ํ๋จ
2. ๋ง์ถค๋ฒ, ๋์ด์ฐ๊ธฐ, ์จ์ ์ด๋ ์ผํ ์ฐจ์ด๋ ํ๋จ ๋์์ด ์๋
3. ๋ฌธ์ฅ์ ์๋, ํํ์ด ๋ด๊ณ ์๋ ์๋ฏธ๋ฅผ ๋น๊ต
4. ๋ ๋ฌธ์ฅ์ ๊ณตํต์ ์ผ๋ก ์ฌ์ฉ๋ ๋จ์ด์ ์ ๋ฌด๋ฅผ ์ฐพ๋ ๊ฒ์ด ์๋, ๋ฌธ์ฅ์ ์๋ฏธ๊ฐ ์ ์ฌํ์ง๋ฅผ ๋น๊ต
5. 0์ ์๋ฏธ์ ์ ์ฌ์ฑ์ด ์๋ ๊ฒฝ์ฐ์ด๊ณ , 5๋ ์๋ฏธ์ ์ผ๋ก ๋๋ฑํจ์ ๋ปํจ
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 329 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: DeBERTaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
[MINSANG SONG] at [BI-Matrix](https://www.bimatrix.co.kr/) |