whisper_werbest / README.md
bigmorning's picture
Upload TFWhisperForConditionalGeneration
868ff31
|
raw
history blame
3.23 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: whisper_werbest
    results: []

whisper_werbest

This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3071
  • Train Accuracy: 0.0324
  • Train Wermet: 1.7931
  • Validation Loss: 0.5766
  • Validation Accuracy: 0.0312
  • Validation Wermet: 1.5663
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Wermet Validation Loss Validation Accuracy Validation Wermet Epoch
5.0795 0.0116 43.8776 4.4395 0.0122 35.4119 0
4.3059 0.0131 29.7976 4.0311 0.0143 26.0070 1
3.8871 0.0148 19.3999 3.6500 0.0158 19.2186 2
3.0943 0.0184 18.3704 2.3327 0.0226 22.5034 3
1.8954 0.0240 16.2471 1.4889 0.0266 14.2782 4
1.2781 0.0269 8.4169 1.1273 0.0283 7.4581 5
0.9797 0.0283 4.8739 0.9481 0.0292 3.9451 6
0.8006 0.0293 2.7433 0.8371 0.0297 2.3065 7
0.6764 0.0299 2.1646 0.7554 0.0301 1.3005 8
0.5820 0.0305 1.5323 0.6980 0.0305 1.1238 9
0.5078 0.0310 1.4328 0.6617 0.0306 1.2793 10
0.4455 0.0314 1.4891 0.6252 0.0309 1.6833 11
0.3927 0.0317 1.6700 0.6123 0.0310 2.1091 12
0.3473 0.0321 1.6245 0.5851 0.0311 1.4109 13
0.3071 0.0324 1.7931 0.5766 0.0312 1.5663 14

Framework versions

  • Transformers 4.25.0.dev0
  • TensorFlow 2.9.2
  • Datasets 2.6.1
  • Tokenizers 0.13.2