File size: 2,391 Bytes
10ae240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec115ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
795192e
5ff7165
a5deaae
 
 
 
 
 
 
 
 
 
4ad2e7d
5ff7165
795192e
5ff7165
 
4ad2e7d
5ff7165
4ad2e7d
5ff7165
795192e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
language: en
tags:
  - summarization
  - transformers
  - t5
  - youtube
license: apache-2.0
datasets:
  - custom
model-index:
  - name: T5 YouTube Summarizer
    results: []
---




# πŸ“Ί T5 YouTube Summarizer

This is a fine-tuned [`t5-base`](https://huggingface.co/t5-base) model for abstractive summarization of YouTube video transcripts. The model is trained on a custom dataset of video transcriptions and their manually written summaries.

---

## ✨ Model Details

- **Base Model**: [`t5-base`](https://huggingface.co/t5-base)
- **Task**: Abstractive Summarization
- **Training Data**: YouTube video transcripts and human-written summaries
- **Max Input Length**: 512 tokens
- **Max Output Length**: 256 tokens
- **Fine-tuning Epochs**: 10
- **Tokenizer**: `T5Tokenizer` (pretrained)

---

## 🧠 Intended Use

This model is designed to generate short, informative summaries from long transcripts of educational or conceptual YouTube videos. It can be used for:

- Quick understanding of long videos
- Automated content summaries for blogs, platforms, or note-taking tools
- Enhancing accessibility for long-form spoken content

---

## πŸš€ How to Use

```python
from transformers import T5ForConditionalGeneration, T5Tokenizer

# Load the model
model = T5ForConditionalGeneration.from_pretrained("your-username/t5-youtube-summarizer")
tokenizer = T5Tokenizer.from_pretrained("your-username/t5-youtube-summarizer")

# Define input text
text = "The video talks about coordinate covalent bonds, giving examples from..."

# Preprocess and summarize
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)

summary_ids = model.generate(
    inputs,
    max_length=256,
    min_length=80,
    num_beams=5,
    length_penalty=2.0,
    no_repeat_ngram_size=3,
    early_stopping=True
)

summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary)
```

## πŸ“Š Evaluation

| Metric  | Value        |
| ------- | ------------ |
| ROUGE-1 | \~0.60       |
| ROUGE-2 | \~0.25       |
| ROUGE-L | \~0.47       |
| Gen Len | \~187 tokens |


## πŸ“Œ Citation
If you use this model in your work, consider citing:
```
@misc{t5ytsummarizer2025,
  title={T5 YouTube Transcript Summarizer},
  author={Muhammad Bilal Yousaf},
  year={2025},
  howpublished={\url{https://huggingface.co/bilal521/t5-youtube-summarizer}},
}
```