Bill Psomas
first model commit
894f2f2
|
raw
history blame
2.22 kB
metadata
license: cc-by-4.0
datasets:
  - imagenet-1k
metrics:
  - accuracy
pipeline_tag: image-classification
language:
  - en
tags:
  - resnet
  - convolutional neural network
  - simpool
  - dino
  - computer vision
  - deep learning

Self-supervised ResNet-50 model with SimPool

ResNet-50 model with SimPool (no gamma) trained on ImageNet-1k for 100 epochs. Self-supervision with DINO.

SimPool is a simple attention-based pooling method at the end of network, introduced on this ICCV 2023 paper and released in this repository. Disclaimer: This model card is written by the author of SimPool, i.e. Bill Psomas.

Motivation

Convolutional networks and vision transformers have different forms of pairwise interactions, pooling across layers and pooling at the end of the network. Does the latter really need to be different? As a by-product of pooling, vision transformers provide spatial attention for free, but this is most often of low quality unless self-supervised, which is not well studied. Is supervision really the problem?

Method

SimPool is a simple attention-based pooling mechanism as a replacement of the default one for both convolutional and transformer encoders. For transformers, we completely discard the [CLS] token. Interestingly, we find that, whether supervised or self-supervised, SimPool improves performance on pre-training and downstream tasks and provides attention maps delineating object boundaries in all cases. One could thus call SimPool universal.

Evaluation with k-NN

k top1 top5
10 63.728 82.032
20 63.852 84.076
100 61.658 85.724
200 60.22 85.32

BibTeX entry and citation info

@misc{psomas2023simpool,
      title={Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?}, 
      author={Bill Psomas and Ioannis Kakogeorgiou and Konstantinos Karantzalos and Yannis Avrithis},
      year={2023},
      eprint={2309.06891},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}