nioushasadjadi
commited on
Commit
·
156a2ea
1
Parent(s):
2fa1eca
Adding max_length and padding to tokenizer and encoder.
Browse files- tokenizer.json +3 -4
- tokenizer.py +23 -18
- tokenizer_config.json +1 -3
tokenizer.json
CHANGED
@@ -15,12 +15,11 @@
|
|
15 |
"pre_tokenizer": {
|
16 |
"type": "KmerSplitter",
|
17 |
"k": 4,
|
18 |
-
"stride": 4
|
|
|
19 |
},
|
20 |
"model": {
|
21 |
-
"type": "
|
22 |
-
"k": 4,
|
23 |
-
"stride": 4,
|
24 |
"unk_token": "[UNK]",
|
25 |
"vocab": {
|
26 |
"[MASK]": 0,
|
|
|
15 |
"pre_tokenizer": {
|
16 |
"type": "KmerSplitter",
|
17 |
"k": 4,
|
18 |
+
"stride": 4,
|
19 |
+
"max_length": 660
|
20 |
},
|
21 |
"model": {
|
22 |
+
"type": "KmerTokenizer",
|
|
|
|
|
23 |
"unk_token": "[UNK]",
|
24 |
"vocab": {
|
25 |
"[MASK]": 0,
|
tokenizer.py
CHANGED
@@ -7,9 +7,10 @@ from itertools import product
|
|
7 |
|
8 |
|
9 |
class KmerTokenizer(PreTrainedTokenizer):
|
10 |
-
def __init__(self, vocab_dict=None, k=4, stride=4, **kwargs):
|
11 |
self.k = k
|
12 |
self.stride = stride
|
|
|
13 |
self.special_tokens = ["[MASK]", "[UNK]"]
|
14 |
|
15 |
if vocab_dict is None:
|
@@ -27,6 +28,11 @@ class KmerTokenizer(PreTrainedTokenizer):
|
|
27 |
# self.pad_token = "[PAD]"
|
28 |
|
29 |
def tokenize(self, text, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
30 |
splits = [text[i:i + self.k] for i in range(0, len(text) - self.k + 1, self.stride)]
|
31 |
return splits
|
32 |
|
@@ -64,12 +70,11 @@ class KmerTokenizer(PreTrainedTokenizer):
|
|
64 |
"pre_tokenizer": {
|
65 |
"type": "KmerSplitter",
|
66 |
"k": self.k,
|
67 |
-
"stride": self.stride
|
|
|
68 |
},
|
69 |
"model": {
|
70 |
-
"type": "
|
71 |
-
"k": self.k,
|
72 |
-
"stride": self.stride,
|
73 |
"unk_token": self.unk_token,
|
74 |
"vocab": self.vocab_dict
|
75 |
},
|
@@ -96,9 +101,7 @@ class KmerTokenizer(PreTrainedTokenizer):
|
|
96 |
"mask_token": "[MASK]",
|
97 |
"model_max_length": 1e12, # Set a high number, or adjust as needed
|
98 |
"tokenizer_class": "KmerTokenizer", # Set your tokenizer class name
|
99 |
-
"unk_token": "[UNK]"
|
100 |
-
"k": self.k,
|
101 |
-
"stride": self.stride
|
102 |
}
|
103 |
tokenizer_config_file = os.path.join(save_directory, "tokenizer_config.json")
|
104 |
with open(tokenizer_config_file, "w", encoding="utf-8") as f:
|
@@ -109,24 +112,26 @@ class KmerTokenizer(PreTrainedTokenizer):
|
|
109 |
@classmethod
|
110 |
def from_pretrained(cls, pretrained_dir, **kwargs):
|
111 |
# Load vocabulary
|
112 |
-
vocab_file = hf_hub_download(repo_id=pretrained_dir, filename="tokenizer.json")
|
113 |
# vocab_file = os.path.join(pretrained_dir, "tokenizer.json")
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
#
|
121 |
# tokenizer_config_file = os.path.join(pretrained_dir, "tokenizer_config.json")
|
122 |
tokenizer_config_file = hf_hub_download(repo_id=pretrained_dir, filename="tokenizer_config.json")
|
123 |
if os.path.exists(tokenizer_config_file):
|
124 |
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
125 |
tokenizer_config = json.load(f)
|
126 |
-
k = tokenizer_config.get("k", 4) # Default to 4 if not specified
|
127 |
-
stride = tokenizer_config.get("stride", k) # Default to k if not specified
|
128 |
else:
|
129 |
raise ValueError(f"Tokenizer config file not found at {tokenizer_config_file}")
|
130 |
|
131 |
# Instantiate the tokenizer with loaded values
|
132 |
-
return cls(vocab=vocab, k=k, stride=stride, **kwargs)
|
|
|
7 |
|
8 |
|
9 |
class KmerTokenizer(PreTrainedTokenizer):
|
10 |
+
def __init__(self, vocab_dict=None, k=4, stride=4, max_len=660, **kwargs):
|
11 |
self.k = k
|
12 |
self.stride = stride
|
13 |
+
self.max_len = max_len
|
14 |
self.special_tokens = ["[MASK]", "[UNK]"]
|
15 |
|
16 |
if vocab_dict is None:
|
|
|
28 |
# self.pad_token = "[PAD]"
|
29 |
|
30 |
def tokenize(self, text, **kwargs):
|
31 |
+
if len(text) > self.max_len:
|
32 |
+
text = text[:self.max_len]
|
33 |
+
if kwargs.get('padding'):
|
34 |
+
if len(text) < self.max_len:
|
35 |
+
text = text + 'N' * (self.max_len - len(text))
|
36 |
splits = [text[i:i + self.k] for i in range(0, len(text) - self.k + 1, self.stride)]
|
37 |
return splits
|
38 |
|
|
|
70 |
"pre_tokenizer": {
|
71 |
"type": "KmerSplitter",
|
72 |
"k": self.k,
|
73 |
+
"stride": self.stride,
|
74 |
+
"max_length": self.max_len
|
75 |
},
|
76 |
"model": {
|
77 |
+
"type": "KmerTokenizer",
|
|
|
|
|
78 |
"unk_token": self.unk_token,
|
79 |
"vocab": self.vocab_dict
|
80 |
},
|
|
|
101 |
"mask_token": "[MASK]",
|
102 |
"model_max_length": 1e12, # Set a high number, or adjust as needed
|
103 |
"tokenizer_class": "KmerTokenizer", # Set your tokenizer class name
|
104 |
+
"unk_token": "[UNK]"
|
|
|
|
|
105 |
}
|
106 |
tokenizer_config_file = os.path.join(save_directory, "tokenizer_config.json")
|
107 |
with open(tokenizer_config_file, "w", encoding="utf-8") as f:
|
|
|
112 |
@classmethod
|
113 |
def from_pretrained(cls, pretrained_dir, **kwargs):
|
114 |
# Load vocabulary
|
|
|
115 |
# vocab_file = os.path.join(pretrained_dir, "tokenizer.json")
|
116 |
+
vocab_file = hf_hub_download(repo_id=pretrained_dir, filename="tokenizer.json")
|
117 |
+
if os.path.exists(vocab_file):
|
118 |
+
with open(vocab_file, "r", encoding="utf-8") as f:
|
119 |
+
vocab_content = json.load(f)
|
120 |
+
vocab = vocab_content["model"]["vocab"]
|
121 |
+
k = vocab_content["pre_tokenizer"]["k"]
|
122 |
+
stride = vocab_content["pre_tokenizer"]["stride"]
|
123 |
+
max_len = vocab_content["pre_tokenizer"]["max_length"]
|
124 |
+
else:
|
125 |
+
raise ValueError(f"Vocabulary file not found at {vocab_file}")
|
126 |
|
127 |
+
# Check for the existence of tokenizer_config.json
|
128 |
# tokenizer_config_file = os.path.join(pretrained_dir, "tokenizer_config.json")
|
129 |
tokenizer_config_file = hf_hub_download(repo_id=pretrained_dir, filename="tokenizer_config.json")
|
130 |
if os.path.exists(tokenizer_config_file):
|
131 |
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
132 |
tokenizer_config = json.load(f)
|
|
|
|
|
133 |
else:
|
134 |
raise ValueError(f"Tokenizer config file not found at {tokenizer_config_file}")
|
135 |
|
136 |
# Instantiate the tokenizer with loaded values
|
137 |
+
return cls(vocab=vocab, k=k, stride=stride, max_len=max_len, **kwargs)
|
tokenizer_config.json
CHANGED
@@ -27,7 +27,5 @@
|
|
27 |
"mask_token": "[MASK]",
|
28 |
"model_max_length": 1000000000000.0,
|
29 |
"tokenizer_class": "KmerTokenizer",
|
30 |
-
"unk_token": "[UNK]"
|
31 |
-
"k": 4,
|
32 |
-
"stride": 4
|
33 |
}
|
|
|
27 |
"mask_token": "[MASK]",
|
28 |
"model_max_length": 1000000000000.0,
|
29 |
"tokenizer_class": "KmerTokenizer",
|
30 |
+
"unk_token": "[UNK]"
|
|
|
|
|
31 |
}
|