|
--- |
|
language: |
|
- ru |
|
tags: |
|
- sentiment |
|
- text-classification |
|
--- |
|
|
|
# RuBERT for Sentiment Analysis |
|
Short Russian texts sentiment classification |
|
|
|
This is a [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model trained on aggregated corpus of 351.797 texts. |
|
|
|
## Labels |
|
0: NEUTRAL |
|
1: POSITIVE |
|
2: NEGATIVE |
|
|
|
## How to use |
|
```python |
|
|
|
import torch |
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import BertTokenizerFast |
|
|
|
tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment') |
|
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment', return_dict=True) |
|
|
|
@torch.no_grad() |
|
def predict(text): |
|
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt') |
|
outputs = model(**inputs) |
|
predicted = torch.nn.functional.softmax(outputs.logits, dim=1) |
|
predicted = torch.argmax(predicted, dim=1).numpy() |
|
return predicted |
|
``` |
|
|
|
|
|
## Datasets used for model training |
|
|
|
**[RuTweetCorp](https://study.mokoron.com/)** |
|
|
|
> Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора //Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116. |
|
|
|
**[RuReviews](https://github.com/sismetanin/rureviews)** |
|
|
|
> RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian. |
|
|
|
**[RuSentiment](http://text-machine.cs.uml.edu/projects/rusentiment/)** |
|
|
|
> A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018. |
|
|
|
**[Отзывы о медучреждениях](https://github.com/blanchefort/datasets/tree/master/medical_comments)** |
|
|
|
> Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта prodoctorov.ru |