clinical-ner / README.md
blaze999's picture
Update README.md
8138426 verified
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: clinical-ner
    results: []
widget:
  - text: 63 year old woman with history of CAD presented to ER
    example_title: Example-1
  - text: 63 year old woman diagnosed with CAD
    example_title: Example-2
  - text: >-
      A 48 year-old female presented with vaginal bleeding and abnormal Pap
      smears. Upon diagnosis of invasive non-keratinizing SCC of the cervix, she
      underwent a radical hysterectomy with salpingo-oophorectomy which
      demonstrated positive spread to the pelvic lymph nodes and the
      parametrium. Pathological examination revealed that the tumour also
      extensively involved the lower uterine segment.
    example_title: example 3

clinical-ner

This model is a fine-tuned version of microsoft/deberta-v3-base on the Medical dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8058
  • Precision: 0.5786
  • Recall: 0.6683
  • F1: 0.6202
  • Accuracy: 0.8099

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45
  • mixed_precision_training: Native AMP

Python Code:

# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("token-classification", model="blaze999/clinical-ner", aggregation_strategy='simple')
result = pipe('45 year old woman diagnosed with CAD')



# Load model directly
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("blaze999/clinical-ner")
model = AutoModelForTokenClassification.from_pretrained("blaze999/clinical-ner")

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 5 4.7713 0.0002 0.001 0.0004 0.0182
No log 2.0 10 4.2264 0.0002 0.0008 0.0003 0.1481
No log 3.0 15 3.6238 0.0004 0.0003 0.0003 0.4575
4.2324 4.0 20 2.8751 0.0 0.0 0.0 0.4734
4.2324 5.0 25 2.4550 0.0306 0.0008 0.0015 0.4739
4.2324 6.0 30 2.1920 0.0722 0.0437 0.0545 0.5007
4.2324 7.0 35 1.9841 0.1137 0.1087 0.1112 0.5392
2.3521 8.0 40 1.8153 0.1956 0.189 0.1922 0.5829
2.3521 9.0 45 1.6504 0.2539 0.2617 0.2578 0.6218
2.3521 10.0 50 1.4801 0.3607 0.3787 0.3695 0.6782
2.3521 11.0 55 1.3417 0.3933 0.433 0.4122 0.7021
1.6185 12.0 60 1.2333 0.4054 0.4795 0.4394 0.7203
1.6185 13.0 65 1.1490 0.4307 0.5125 0.4680 0.7347
1.6185 14.0 70 1.0750 0.4412 0.543 0.4868 0.7503
1.6185 15.0 75 1.0179 0.4816 0.5637 0.5195 0.7619
1.1438 16.0 80 0.9774 0.4899 0.578 0.5303 0.7689
1.1438 17.0 85 0.9475 0.5005 0.5955 0.5439 0.7743
1.1438 18.0 90 0.9192 0.5082 0.6078 0.5535 0.7788
1.1438 19.0 95 0.8923 0.5151 0.6085 0.5579 0.7828
0.8863 20.0 100 0.8691 0.5263 0.6242 0.5711 0.7882
0.8863 21.0 105 0.8604 0.5358 0.6342 0.5809 0.7907
0.8863 22.0 110 0.8474 0.5429 0.641 0.5879 0.7946
0.8863 23.0 115 0.8362 0.5493 0.644 0.5929 0.7969
0.7361 24.0 120 0.8284 0.5531 0.6512 0.5982 0.7994
0.7361 25.0 125 0.8325 0.5555 0.6565 0.6018 0.8001
0.7361 26.0 130 0.8156 0.5686 0.6562 0.6093 0.8035
0.7361 27.0 135 0.8177 0.5634 0.6625 0.6089 0.8039
0.6449 28.0 140 0.8152 0.5643 0.6567 0.6070 0.8036
0.6449 29.0 145 0.8109 0.5700 0.6647 0.6137 0.8066
0.6449 30.0 150 0.8164 0.5697 0.6653 0.6138 0.8055
0.6449 31.0 155 0.8081 0.5742 0.6627 0.6153 0.8085
0.5912 32.0 160 0.8130 0.5687 0.6677 0.6142 0.8067
0.5912 33.0 165 0.8048 0.5779 0.6637 0.6179 0.8089
0.5912 34.0 170 0.8096 0.5760 0.669 0.6190 0.8085
0.5912 35.0 175 0.8063 0.5790 0.6677 0.6202 0.8091
0.5625 36.0 180 0.8052 0.5755 0.6673 0.6180 0.8094
0.5625 37.0 185 0.8063 0.5753 0.6667 0.6176 0.8093
0.5625 38.0 190 0.8055 0.5783 0.6677 0.6198 0.8103
0.5625 39.0 195 0.8052 0.5792 0.668 0.6205 0.8099
0.5442 40.0 200 0.8052 0.5798 0.6685 0.6210 0.8097
0.5442 41.0 205 0.8055 0.5784 0.6683 0.6201 0.8098
0.5442 42.0 210 0.8056 0.5789 0.6685 0.6205 0.8100
0.5442 43.0 215 0.8057 0.5786 0.6683 0.6202 0.8100
0.5397 44.0 220 0.8057 0.5786 0.6683 0.6202 0.8099
0.5397 45.0 225 0.8058 0.5786 0.6683 0.6202 0.8099

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1