postOpTranscriptAnalyzer
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 . It achieves the following results on the evaluation set:
- Loss: 0.8360
Model description
The purpose of this model is to analyze the performance of healthcare professionals in providing post-operative instructions, based on a transcript of their conversations.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9739 | 0.1739 | 1 | 0.9650 |
0.8749 | 0.3478 | 2 | 0.9442 |
0.896 | 0.6957 | 4 | 0.8696 |
0.8791 | 1.0435 | 6 | 0.8514 |
0.8063 | 1.3043 | 8 | 0.8326 |
0.7643 | 1.6522 | 10 | 0.8248 |
0.8239 | 2.0 | 12 | 0.8203 |
0.6914 | 2.2609 | 14 | 0.8261 |
0.6751 | 2.6087 | 16 | 0.8356 |
0.6157 | 2.9565 | 18 | 0.8357 |
0.5871 | 3.2174 | 20 | 0.8360 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
See axolotl config
axolotl version: 0.4.1
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: '<s>'
eos_token: '</s>'
unk_token: '<unk>'
hub_model_id: bmezgebu/postOpTranscriptAnalyzer
push_to_hub: True
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for bmezgebu/postOpTranscriptAnalyzer
Base model
mistralai/Mistral-7B-v0.1