metadata
license: cc-by-nc-4.0
base_model: NYTK/PULI-BERT-Large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: kmdb_ner_model
results: []
kmdb_ner_model
This model is a fine-tuned version of NYTK/PULI-BERT-Large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0405
- Precision: 0.8023
- Recall: 0.8261
- F1: 0.8140
- Accuracy: 0.9842
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0613 | 0.11 | 1000 | 0.0575 | 0.7102 | 0.7359 | 0.7228 | 0.9776 |
0.0559 | 0.23 | 2000 | 0.0525 | 0.7108 | 0.7611 | 0.7351 | 0.9788 |
0.0569 | 0.34 | 3000 | 0.0512 | 0.7375 | 0.7856 | 0.7608 | 0.9798 |
0.0481 | 0.45 | 4000 | 0.0496 | 0.7402 | 0.7975 | 0.7678 | 0.9803 |
0.041 | 0.57 | 5000 | 0.0474 | 0.7567 | 0.7981 | 0.7769 | 0.9809 |
0.0434 | 0.68 | 6000 | 0.0463 | 0.7588 | 0.7853 | 0.7718 | 0.9813 |
0.0577 | 0.8 | 7000 | 0.0462 | 0.7592 | 0.7896 | 0.7741 | 0.9812 |
0.0422 | 0.91 | 8000 | 0.0428 | 0.7820 | 0.8057 | 0.7937 | 0.9828 |
0.0346 | 1.02 | 9000 | 0.0443 | 0.7758 | 0.8153 | 0.7951 | 0.9825 |
0.0301 | 1.14 | 10000 | 0.0431 | 0.7831 | 0.8124 | 0.7974 | 0.9830 |
0.0305 | 1.25 | 11000 | 0.0427 | 0.7955 | 0.8162 | 0.8057 | 0.9834 |
0.0347 | 1.36 | 12000 | 0.0420 | 0.7923 | 0.8171 | 0.8045 | 0.9834 |
0.0397 | 1.48 | 13000 | 0.0422 | 0.7923 | 0.8220 | 0.8069 | 0.9835 |
0.0267 | 1.59 | 14000 | 0.0411 | 0.7970 | 0.8209 | 0.8087 | 0.9838 |
0.03 | 1.71 | 15000 | 0.0415 | 0.7946 | 0.8230 | 0.8085 | 0.9838 |
0.0311 | 1.82 | 16000 | 0.0407 | 0.8023 | 0.8253 | 0.8136 | 0.9842 |
0.0283 | 1.93 | 17000 | 0.0405 | 0.8023 | 0.8261 | 0.8140 | 0.9842 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0