kmdb_ner_model / README.md
boapps's picture
End of training
cbe054a verified
|
raw
history blame
3.02 kB
metadata
license: cc-by-nc-4.0
base_model: NYTK/PULI-BERT-Large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: kmdb_ner_model
    results: []

kmdb_ner_model

This model is a fine-tuned version of NYTK/PULI-BERT-Large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0405
  • Precision: 0.8023
  • Recall: 0.8261
  • F1: 0.8140
  • Accuracy: 0.9842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0613 0.11 1000 0.0575 0.7102 0.7359 0.7228 0.9776
0.0559 0.23 2000 0.0525 0.7108 0.7611 0.7351 0.9788
0.0569 0.34 3000 0.0512 0.7375 0.7856 0.7608 0.9798
0.0481 0.45 4000 0.0496 0.7402 0.7975 0.7678 0.9803
0.041 0.57 5000 0.0474 0.7567 0.7981 0.7769 0.9809
0.0434 0.68 6000 0.0463 0.7588 0.7853 0.7718 0.9813
0.0577 0.8 7000 0.0462 0.7592 0.7896 0.7741 0.9812
0.0422 0.91 8000 0.0428 0.7820 0.8057 0.7937 0.9828
0.0346 1.02 9000 0.0443 0.7758 0.8153 0.7951 0.9825
0.0301 1.14 10000 0.0431 0.7831 0.8124 0.7974 0.9830
0.0305 1.25 11000 0.0427 0.7955 0.8162 0.8057 0.9834
0.0347 1.36 12000 0.0420 0.7923 0.8171 0.8045 0.9834
0.0397 1.48 13000 0.0422 0.7923 0.8220 0.8069 0.9835
0.0267 1.59 14000 0.0411 0.7970 0.8209 0.8087 0.9838
0.03 1.71 15000 0.0415 0.7946 0.8230 0.8085 0.9838
0.0311 1.82 16000 0.0407 0.8023 0.8253 0.8136 0.9842
0.0283 1.93 17000 0.0405 0.8023 0.8261 0.8140 0.9842

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.0