finetuned-arsenic
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the arsenic_images dataset. It achieves the following results on the evaluation set:
- Loss: 0.0026
- Accuracy: 0.9993
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2214 | 0.1848 | 100 | 0.1243 | 0.9607 |
0.1213 | 0.3697 | 200 | 0.1763 | 0.9339 |
0.1201 | 0.5545 | 300 | 0.1018 | 0.9607 |
0.0991 | 0.7394 | 400 | 0.2071 | 0.9417 |
0.1127 | 0.9242 | 500 | 0.0886 | 0.9666 |
0.0314 | 1.1091 | 600 | 0.0333 | 0.9908 |
0.0252 | 1.2939 | 700 | 0.0110 | 0.9974 |
0.0582 | 1.4787 | 800 | 0.0104 | 0.9987 |
0.0455 | 1.6636 | 900 | 0.0198 | 0.9954 |
0.0569 | 1.8484 | 1000 | 0.0180 | 0.9961 |
0.0627 | 2.0333 | 1100 | 0.0244 | 0.9948 |
0.0328 | 2.2181 | 1200 | 0.0054 | 0.9987 |
0.0156 | 2.4030 | 1300 | 0.0193 | 0.9948 |
0.0016 | 2.5878 | 1400 | 0.0074 | 0.9974 |
0.0032 | 2.7726 | 1500 | 0.0045 | 0.9980 |
0.0233 | 2.9575 | 1600 | 0.0029 | 0.9993 |
0.0434 | 3.1423 | 1700 | 0.0026 | 0.9993 |
0.0079 | 3.3272 | 1800 | 0.0095 | 0.9980 |
0.0175 | 3.5120 | 1900 | 0.0111 | 0.9974 |
0.0013 | 3.6969 | 2000 | 0.0109 | 0.9974 |
0.0008 | 3.8817 | 2100 | 0.0053 | 0.9987 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 195
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for bob123dylan/finetuned-arsenic
Base model
google/vit-base-patch16-224-in21k