finetuned-arsenic

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the arsenic_images dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0026
  • Accuracy: 0.9993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2214 0.1848 100 0.1243 0.9607
0.1213 0.3697 200 0.1763 0.9339
0.1201 0.5545 300 0.1018 0.9607
0.0991 0.7394 400 0.2071 0.9417
0.1127 0.9242 500 0.0886 0.9666
0.0314 1.1091 600 0.0333 0.9908
0.0252 1.2939 700 0.0110 0.9974
0.0582 1.4787 800 0.0104 0.9987
0.0455 1.6636 900 0.0198 0.9954
0.0569 1.8484 1000 0.0180 0.9961
0.0627 2.0333 1100 0.0244 0.9948
0.0328 2.2181 1200 0.0054 0.9987
0.0156 2.4030 1300 0.0193 0.9948
0.0016 2.5878 1400 0.0074 0.9974
0.0032 2.7726 1500 0.0045 0.9980
0.0233 2.9575 1600 0.0029 0.9993
0.0434 3.1423 1700 0.0026 0.9993
0.0079 3.3272 1800 0.0095 0.9980
0.0175 3.5120 1900 0.0111 0.9974
0.0013 3.6969 2000 0.0109 0.9974
0.0008 3.8817 2100 0.0053 0.9987

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bob123dylan/finetuned-arsenic

Finetuned
(1792)
this model

Evaluation results