File size: 46,802 Bytes
6b3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
---
base_model: microsoft/deberta-v3-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:116445
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: what is the main purpose of the brain
  sentences:
  - Brain Physiologically, the function of the brain is to exert centralized control
    over the other organs of the body. The brain acts on the rest of the body both
    by generating patterns of muscle activity and by driving the secretion of chemicals
    called hormones. This centralized control allows rapid and coordinated responses
    to changes in the environment. Some basic types of responsiveness such as reflexes
    can be mediated by the spinal cord or peripheral ganglia, but sophisticated purposeful
    control of behavior based on complex sensory input requires the information integrating
    capabilities of a centralized brain.
  - How do scientists know that some mountains were once at the bottom of an ocean?
  - The Smiths Wiki | Fandom powered by Wikia Share Ad blocker interference detected!
    Wikia is a free-to-use site that makes money from advertising. We have a modified
    experience for viewers using ad blockers Wikia is not accessible if you’ve made
    further modifications. Remove the custom ad blocker rule(s) and the page will
    load as expected. The Smiths were an English rock band formed in Manchester in
    1982. Based on the songwriting partnership of Morrissey (vocals) and Johnny Marr
    (guitar), the band also included Andy Rourke (bass), Mike Joyce (drums) and for
    a brief time Craig Gannon (rhythm guitar). Critics have called them one of the
    most important alternative rock bands to emerge from the British independent music
    scene of the 1980s,and the group has had major influence on subsequent artists.
    Morrissey's lovelorn tales of alienation found an audience amongst youth culture
    bored by the ubiquitous synthesiser-pop bands of the early 1980s, while Marr's
    complex melodies helped return guitar-based music to popularity. The group were
    signed to the independent record label Rough Trade Records , for whom they released
    four studio albums and several compilations, as well as numerous non-LP singles.
    Although they had limited commercial success outside the UK while they were still
    together, and never released a single that charted higher than number 10 in their
    home country, The Smiths won a growing following, and they remain cult and commercial
    favourites. The band broke up in 1987 amid disagreements between Morrissey and
    Marr and has turned down several offers to reform. Welcome to The Smiths Wiki
- source_sentence: There were 29 Muslims fatalities in the Cave of the Patriarchs
    massacre .
  sentences:
  - In August , after the end of the war in June 1902 , Higgins Southampton left the
    `` SSBavarian '' and returned to Cape Town the following month .
  - Between 29 and 52 Muslims were killed and more than 100 others wounded . [   Settlers
    remember gunman Goldstein ; Hebron riots continue ] .
  - 29 Muslims were killed and more than 100 others wounded . [   Settlers remember
    gunman Goldstein ; Hebron riots continue ] .
- source_sentence: are tabby cats all male?
  sentences:
  - Did you know orange tabby cats are typically male? In fact, up to 80 percent of
    orange tabbies are male, making orange female cats a bit of a rarity. According
    to the BBC's Focus Magazine, the ginger gene in cats works a little differently
    compared to humans; it is on the X chromosome.
  - Shawnee Trails Council was formed from the merger of the Four Rivers Council and
    the Audubon Council .
  - 'A picture of a modern looking kitchen area

    '
- source_sentence: Aamir Khan agreed to act immediately after reading Mehra 's screenplay
    in `` Rang De Basanti '' .
  sentences:
  - Chris Rea —   Free listening, videos, concerts, stats and photos at Last.fm singer-songwriter
    Christopher Anton Rea (pronounced Ree-ah), born 4 March 1951, is a singer, songwriter,
    and guitarist from Middlesbrough, England. Rea's recording career began in 1978.
    Although he almost immediately had a US hit single with "Fool (If You Think It's
    Over)", Rea's initial focus was on continental Europe, releasing eight albums
    in the 1980s. It wasn't until 1985's Shamrock Diaries and the songs "Stainsby
    Girls" and "Josephine," that UK audiences began to take notice of him. Follow
    up albums… read more
  - "Healthy Fast Food Meal No. 1. Grilled Chicken Sandwich and Fruit Cup (Chick-fil-A)\
    \ Several fast food chains offer a grilled chicken sandwich. The trick is ordering\
    \ it without mayo or creamy sauce, and making sure itâ\x80\x99s served with a\
    \ whole grain bun."
  - Aamir Khan agreed to act in `` Rang De Basanti '' immediately after reading Mehra
    's script .
- source_sentence: 'A man wearing a blue bow tie and a fedora hat in a car. '
  sentences:
  - A man takes a photo of himself wearing a bowtie and hat
  - Scientists explain the world based on what?
  - 'County of Angus - definition of County of Angus by The Free Dictionary County
    of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus
     (ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland
    and are usually black but also occur in a red variety. Also called Black Angus.
    [After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council
    area of E Scotland on the North Sea: the historical county of Angus became part
    of Tayside region in 1975; reinstated as a unitary authority (excluding City of
    Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area:
    2181 sq km (842 sq miles) An•gus'
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.7489263204555723
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7626005619606424
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7591990025704353
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7477882076989188
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7622787611500085
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7539243664071233
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6493790443582248
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6306412644605037
      name: Spearman Dot
    - type: pearson_max
      value: 0.7622787611500085
      name: Pearson Max
    - type: spearman_max
      value: 0.7626005619606424
      name: Spearman Max
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: allNLI dev
      type: allNLI-dev
    metrics:
    - type: cosine_accuracy
      value: 0.7109375
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.916961669921875
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.5853658536585366
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.8279993534088135
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.4748201438848921
      name: Cosine Precision
    - type: cosine_recall
      value: 0.7630057803468208
      name: Cosine Recall
    - type: cosine_ap
      value: 0.5495769497490841
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.671875
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 481.2850646972656
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.549165120593692
      name: Dot F1
    - type: dot_f1_threshold
      value: 381.15167236328125
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.40437158469945356
      name: Dot Precision
    - type: dot_recall
      value: 0.8554913294797688
      name: Dot Recall
    - type: dot_ap
      value: 0.45293867777170244
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.71484375
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 186.7671356201172
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.5696465696465696
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 268.783935546875
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.4448051948051948
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.791907514450867
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.5511647333663136
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.71484375
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 8.915003776550293
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.574074074074074
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 12.812746047973633
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.47876447876447875
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.7167630057803468
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.5535962824434967
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.71484375
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 481.2850646972656
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.5853658536585366
      name: Max F1
    - type: max_f1_threshold
      value: 381.15167236328125
      name: Max F1 Threshold
    - type: max_precision
      value: 0.47876447876447875
      name: Max Precision
    - type: max_recall
      value: 0.8554913294797688
      name: Max Recall
    - type: max_ap
      value: 0.5535962824434967
      name: Max Ap
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: Qnli dev
      type: Qnli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.681640625
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8160840272903442
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6917562724014337
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7854001522064209
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5993788819875776
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8177966101694916
      name: Cosine Recall
    - type: cosine_ap
      value: 0.7109982147608755
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.6484375
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 392.5464782714844
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.6688311688311689
      name: Dot F1
    - type: dot_f1_threshold
      value: 368.7878723144531
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.5421052631578948
      name: Dot Precision
    - type: dot_recall
      value: 0.8728813559322034
      name: Dot Recall
    - type: dot_ap
      value: 0.6053421534358263
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.685546875
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 244.63809204101562
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6938053097345133
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 295.4796142578125
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.5957446808510638
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.8305084745762712
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.7216536349653324
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.6875
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 13.026724815368652
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.689407540394973
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 14.538017272949219
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.5981308411214953
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.8135593220338984
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.7181091181717016
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.6875
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 392.5464782714844
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6938053097345133
      name: Max F1
    - type: max_f1_threshold
      value: 368.7878723144531
      name: Max F1 Threshold
    - type: max_precision
      value: 0.5993788819875776
      name: Max Precision
    - type: max_recall
      value: 0.8728813559322034
      name: Max Recall
    - type: max_ap
      value: 0.7216536349653324
      name: Max Ap
---

# SentenceTransformer based on microsoft/deberta-v3-small

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the bobox/enhanced_nli-50_k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - bobox/enhanced_nli-50_k
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp")
# Run inference
sentences = [
    'A man wearing a blue bow tie and a fedora hat in a car. ',
    'A man takes a photo of himself wearing a bowtie and hat',
    'County of Angus - definition of County of Angus by The Free Dictionary County of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus \xa0(ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland and are usually black but also occur in a red variety. Also called Black Angus. [After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council area of E Scotland on the North Sea: the historical county of Angus became part of Tayside region in 1975; reinstated as a unitary authority (excluding City of Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area: 2181 sq km (842 sq miles) An•gus',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7489     |
| **spearman_cosine** | **0.7626** |
| pearson_manhattan   | 0.7592     |
| spearman_manhattan  | 0.7478     |
| pearson_euclidean   | 0.7623     |
| spearman_euclidean  | 0.7539     |
| pearson_dot         | 0.6494     |
| spearman_dot        | 0.6306     |
| pearson_max         | 0.7623     |
| spearman_max        | 0.7626     |

#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.7109     |
| cosine_accuracy_threshold    | 0.917      |
| cosine_f1                    | 0.5854     |
| cosine_f1_threshold          | 0.828      |
| cosine_precision             | 0.4748     |
| cosine_recall                | 0.763      |
| cosine_ap                    | 0.5496     |
| dot_accuracy                 | 0.6719     |
| dot_accuracy_threshold       | 481.2851   |
| dot_f1                       | 0.5492     |
| dot_f1_threshold             | 381.1517   |
| dot_precision                | 0.4044     |
| dot_recall                   | 0.8555     |
| dot_ap                       | 0.4529     |
| manhattan_accuracy           | 0.7148     |
| manhattan_accuracy_threshold | 186.7671   |
| manhattan_f1                 | 0.5696     |
| manhattan_f1_threshold       | 268.7839   |
| manhattan_precision          | 0.4448     |
| manhattan_recall             | 0.7919     |
| manhattan_ap                 | 0.5512     |
| euclidean_accuracy           | 0.7148     |
| euclidean_accuracy_threshold | 8.915      |
| euclidean_f1                 | 0.5741     |
| euclidean_f1_threshold       | 12.8127    |
| euclidean_precision          | 0.4788     |
| euclidean_recall             | 0.7168     |
| euclidean_ap                 | 0.5536     |
| max_accuracy                 | 0.7148     |
| max_accuracy_threshold       | 481.2851   |
| max_f1                       | 0.5854     |
| max_f1_threshold             | 381.1517   |
| max_precision                | 0.4788     |
| max_recall                   | 0.8555     |
| **max_ap**                   | **0.5536** |

#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.6816     |
| cosine_accuracy_threshold    | 0.8161     |
| cosine_f1                    | 0.6918     |
| cosine_f1_threshold          | 0.7854     |
| cosine_precision             | 0.5994     |
| cosine_recall                | 0.8178     |
| cosine_ap                    | 0.711      |
| dot_accuracy                 | 0.6484     |
| dot_accuracy_threshold       | 392.5465   |
| dot_f1                       | 0.6688     |
| dot_f1_threshold             | 368.7879   |
| dot_precision                | 0.5421     |
| dot_recall                   | 0.8729     |
| dot_ap                       | 0.6053     |
| manhattan_accuracy           | 0.6855     |
| manhattan_accuracy_threshold | 244.6381   |
| manhattan_f1                 | 0.6938     |
| manhattan_f1_threshold       | 295.4796   |
| manhattan_precision          | 0.5957     |
| manhattan_recall             | 0.8305     |
| manhattan_ap                 | 0.7217     |
| euclidean_accuracy           | 0.6875     |
| euclidean_accuracy_threshold | 13.0267    |
| euclidean_f1                 | 0.6894     |
| euclidean_f1_threshold       | 14.538     |
| euclidean_precision          | 0.5981     |
| euclidean_recall             | 0.8136     |
| euclidean_ap                 | 0.7181     |
| max_accuracy                 | 0.6875     |
| max_accuracy_threshold       | 392.5465   |
| max_f1                       | 0.6938     |
| max_f1_threshold             | 368.7879   |
| max_precision                | 0.5994     |
| max_recall                   | 0.8729     |
| **max_ap**                   | **0.7217** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### bobox/enhanced_nli-50_k

* Dataset: bobox/enhanced_nli-50_k
* Size: 116,445 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 33.67 tokens</li><li>max: 338 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 51.48 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                            | sentence2                                                                                                                                                                                                                                  |
  |:---------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who is darnell from my name is earl</code>                     | <code>Eddie Steeples Eddie Steeples (born November 25, 1973)[1] is an American actor known for his roles as the "Rubberband Man" in an advertising campaign for OfficeMax, and as Darnell Turner on the NBC sitcom My Name Is Earl.</code> |
  | <code>Ferrell and the Chili Peppers toured together in 2013 .</code> | <code>Ferrell and the Chili Peppers wrapped up I 'm With You World Tour in April 2013 .</code>                                                                                                                                             |
  | <code>Cells have four cycles.</code>                                 | <code>How many cycles do cells have?</code>                                                                                                                                                                                                |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Evaluation Dataset

#### bobox/enhanced_nli-50_k

* Dataset: bobox/enhanced_nli-50_k
* Size: 1,506 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 32.36 tokens</li><li>max: 341 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 61.99 tokens</li><li>max: 431 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                     | sentence2                                                                                                                                                                                 |
  |:----------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Interestingly, snakes use their forked tongues to smell.</code>                                                                         | <code>Snakes use their tongue to smell things.</code>                                                                                                                                     |
  | <code>Soil is a renewable resource that can take thousand of years to form.</code>                                                            | <code>What is a renewable resource that can take thousand of years to form?</code>                                                                                                        |
  | <code>As of March 22 , there were more than 321,000 cases with over 13,600 deaths and more than 96,000 recoveries reported worldwide .</code> | <code>As of 22 March , more than 321,000 cases of COVID-19 have been reported in over 180 countries and territories , resulting in more than 13,600 deaths and 96,000 recoveries .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 640
- `per_device_eval_batch_size`: 128
- `learning_rate`: 3.75e-05
- `weight_decay`: 0.0005
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06}
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 640
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3.75e-05
- `weight_decay`: 0.0005
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | loss   | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:---------------:|:-----------------:|:------------------------:|
| 0.0055 | 1    | 8.8159        | -      | -               | -                 | -                        |
| 0.0110 | 2    | 9.1259        | -      | -               | -                 | -                        |
| 0.0165 | 3    | 8.9017        | -      | -               | -                 | -                        |
| 0.0220 | 4    | 9.1969        | -      | -               | -                 | -                        |
| 0.0275 | 5    | 9.3716        | 1.3746 | 0.6067          | 0.3706            | 0.1943                   |
| 0.0330 | 6    | 9.0425        | -      | -               | -                 | -                        |
| 0.0385 | 7    | 8.7309        | -      | -               | -                 | -                        |
| 0.0440 | 8    | 9.0123        | -      | -               | -                 | -                        |
| 0.0495 | 9    | 8.8095        | -      | -               | -                 | -                        |
| 0.0549 | 10   | 9.3194        | 1.3227 | 0.6089          | 0.3721            | 0.1976                   |
| 0.0604 | 11   | 8.9873        | -      | -               | -                 | -                        |
| 0.0659 | 12   | 8.5575        | -      | -               | -                 | -                        |
| 0.0714 | 13   | 8.8096        | -      | -               | -                 | -                        |
| 0.0769 | 14   | 8.0996        | -      | -               | -                 | -                        |
| 0.0824 | 15   | 8.1942        | 1.2244 | 0.6140          | 0.3743            | 0.2085                   |
| 0.0879 | 16   | 8.1654        | -      | -               | -                 | -                        |
| 0.0934 | 17   | 7.7336        | -      | -               | -                 | -                        |
| 0.0989 | 18   | 7.9535        | -      | -               | -                 | -                        |
| 0.1044 | 19   | 7.9322        | -      | -               | -                 | -                        |
| 0.1099 | 20   | 7.6812        | 1.1301 | 0.6199          | 0.3790            | 0.2233                   |
| 0.1154 | 21   | 7.551         | -      | -               | -                 | -                        |
| 0.1209 | 22   | 7.3788        | -      | -               | -                 | -                        |
| 0.1264 | 23   | 7.1746        | -      | -               | -                 | -                        |
| 0.1319 | 24   | 7.1849        | -      | -               | -                 | -                        |
| 0.1374 | 25   | 7.1085        | 1.0723 | 0.6195          | 0.3852            | 0.2357                   |
| 0.1429 | 26   | 7.3926        | -      | -               | -                 | -                        |
| 0.1484 | 27   | 7.1817        | -      | -               | -                 | -                        |
| 0.1538 | 28   | 7.239         | -      | -               | -                 | -                        |
| 0.1593 | 29   | 7.0023        | -      | -               | -                 | -                        |
| 0.1648 | 30   | 6.9898        | 1.0282 | 0.6215          | 0.3898            | 0.2477                   |
| 0.1703 | 31   | 6.9776        | -      | -               | -                 | -                        |
| 0.1758 | 32   | 6.8088        | -      | -               | -                 | -                        |
| 0.1813 | 33   | 6.8916        | -      | -               | -                 | -                        |
| 0.1868 | 34   | 6.6931        | -      | -               | -                 | -                        |
| 0.1923 | 35   | 6.5707        | 0.9846 | 0.6253          | 0.3952            | 0.2608                   |
| 0.1978 | 36   | 6.6231        | -      | -               | -                 | -                        |
| 0.2033 | 37   | 6.4951        | -      | -               | -                 | -                        |
| 0.2088 | 38   | 6.4607        | -      | -               | -                 | -                        |
| 0.2143 | 39   | 6.4504        | -      | -               | -                 | -                        |
| 0.2198 | 40   | 6.3649        | 0.9314 | 0.6299          | 0.4041            | 0.2738                   |
| 0.2253 | 41   | 6.2244        | -      | -               | -                 | -                        |
| 0.2308 | 42   | 6.007         | -      | -               | -                 | -                        |
| 0.2363 | 43   | 5.977         | -      | -               | -                 | -                        |
| 0.2418 | 44   | 6.0748        | -      | -               | -                 | -                        |
| 0.2473 | 45   | 5.7946        | 0.8549 | 0.6404          | 0.4116            | 0.2847                   |
| 0.2527 | 46   | 5.8751        | -      | -               | -                 | -                        |
| 0.2582 | 47   | 5.543         | -      | -               | -                 | -                        |
| 0.2637 | 48   | 5.5511        | -      | -               | -                 | -                        |
| 0.2692 | 49   | 5.411         | -      | -               | -                 | -                        |
| 0.2747 | 50   | 5.378         | 0.7943 | 0.6557          | 0.4159            | 0.2866                   |
| 0.2802 | 51   | 5.3831        | -      | -               | -                 | -                        |
| 0.2857 | 52   | 4.9729        | -      | -               | -                 | -                        |
| 0.2912 | 53   | 5.0425        | -      | -               | -                 | -                        |
| 0.2967 | 54   | 4.9446        | -      | -               | -                 | -                        |
| 0.3022 | 55   | 4.9288        | 0.7178 | 0.6679          | 0.4273            | 0.3132                   |
| 0.3077 | 56   | 4.8434        | -      | -               | -                 | -                        |
| 0.3132 | 57   | 4.6914        | -      | -               | -                 | -                        |
| 0.3187 | 58   | 4.5254        | -      | -               | -                 | -                        |
| 0.3242 | 59   | 4.6734        | -      | -               | -                 | -                        |
| 0.3297 | 60   | 4.2421        | 0.6202 | 0.6684          | 0.4423            | 0.3580                   |
| 0.3352 | 61   | 4.2234        | -      | -               | -                 | -                        |
| 0.3407 | 62   | 4.0225        | -      | -               | -                 | -                        |
| 0.3462 | 63   | 4.0034        | -      | -               | -                 | -                        |
| 0.3516 | 64   | 3.994         | -      | -               | -                 | -                        |
| 0.3571 | 65   | 3.651         | 0.5489 | 0.6750          | 0.4569            | 0.4014                   |
| 0.3626 | 66   | 3.9308        | -      | -               | -                 | -                        |
| 0.3681 | 67   | 3.8694        | -      | -               | -                 | -                        |
| 0.3736 | 68   | 3.7159        | -      | -               | -                 | -                        |
| 0.3791 | 69   | 3.6499        | -      | -               | -                 | -                        |
| 0.3846 | 70   | 3.4749        | 0.4923 | 0.6734          | 0.4701            | 0.4465                   |
| 0.3901 | 71   | 3.3356        | -      | -               | -                 | -                        |
| 0.3956 | 72   | 3.4768        | -      | -               | -                 | -                        |
| 0.4011 | 73   | 3.2748        | -      | -               | -                 | -                        |
| 0.4066 | 74   | 3.2789        | -      | -               | -                 | -                        |
| 0.4121 | 75   | 2.9815        | 0.4422 | 0.6759          | 0.4747            | 0.4924                   |
| 0.4176 | 76   | 3.2356        | -      | -               | -                 | -                        |
| 0.4231 | 77   | 2.946         | -      | -               | -                 | -                        |
| 0.4286 | 78   | 2.8888        | -      | -               | -                 | -                        |
| 0.4341 | 79   | 2.8992        | -      | -               | -                 | -                        |
| 0.4396 | 80   | 2.9901        | 0.4040 | 0.6786          | 0.4781            | 0.5478                   |
| 0.4451 | 81   | 2.6608        | -      | -               | -                 | -                        |
| 0.4505 | 82   | 2.831         | -      | -               | -                 | -                        |
| 0.4560 | 83   | 2.5503        | -      | -               | -                 | -                        |
| 0.4615 | 84   | 2.8576        | -      | -               | -                 | -                        |
| 0.4670 | 85   | 2.5726        | 0.3711 | 0.6858          | 0.4898            | 0.6134                   |
| 0.4725 | 86   | 2.7197        | -      | -               | -                 | -                        |
| 0.4780 | 87   | 2.5123        | -      | -               | -                 | -                        |
| 0.4835 | 88   | 2.553         | -      | -               | -                 | -                        |
| 0.4890 | 89   | 2.4862        | -      | -               | -                 | -                        |
| 0.4945 | 90   | 2.491         | 0.3450 | 0.6997          | 0.5077            | 0.6668                   |
| 0.5    | 91   | 2.3648        | -      | -               | -                 | -                        |
| 0.5055 | 92   | 2.3788        | -      | -               | -                 | -                        |
| 0.5110 | 93   | 2.3758        | -      | -               | -                 | -                        |
| 0.5165 | 94   | 2.3319        | -      | -               | -                 | -                        |
| 0.5220 | 95   | 2.2336        | 0.3238 | 0.7048          | 0.5252            | 0.7018                   |
| 0.5275 | 96   | 2.3036        | -      | -               | -                 | -                        |
| 0.5330 | 97   | 2.3034        | -      | -               | -                 | -                        |
| 0.5385 | 98   | 2.207         | -      | -               | -                 | -                        |
| 0.5440 | 99   | 2.1732        | -      | -               | -                 | -                        |
| 0.5495 | 100  | 2.1743        | 0.3036 | 0.7091          | 0.5418            | 0.7272                   |
| 0.5549 | 101  | 2.086         | -      | -               | -                 | -                        |
| 0.5604 | 102  | 2.0223        | -      | -               | -                 | -                        |
| 0.5659 | 103  | 2.0878        | -      | -               | -                 | -                        |
| 0.5714 | 104  | 1.9475        | -      | -               | -                 | -                        |
| 0.5769 | 105  | 2.1524        | 0.2853 | 0.7159          | 0.5499            | 0.7489                   |
| 0.5824 | 106  | 1.9393        | -      | -               | -                 | -                        |
| 0.5879 | 107  | 2.1308        | -      | -               | -                 | -                        |
| 0.5934 | 108  | 1.9469        | -      | -               | -                 | -                        |
| 0.5989 | 109  | 1.8683        | -      | -               | -                 | -                        |
| 0.6044 | 110  | 1.8167        | 0.2702 | 0.7217          | 0.5536            | 0.7626                   |

</details>

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->