SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2")
# Run inference
sentences = [
'A wet child stands in chest deep ocean water.',
'The child s playing on the beach.',
'A woman paints a portrait of her best friend.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.6583 |
cosine_accuracy_threshold | 0.6767 |
cosine_f1 | 0.7049 |
cosine_f1_threshold | 0.6018 |
cosine_precision | 0.6115 |
cosine_recall | 0.8321 |
cosine_ap | 0.6995 |
dot_accuracy | 0.6272 |
dot_accuracy_threshold | 163.2505 |
dot_f1 | 0.6976 |
dot_f1_threshold | 119.2078 |
dot_precision | 0.5639 |
dot_recall | 0.9144 |
dot_ap | 0.6437 |
manhattan_accuracy | 0.6571 |
manhattan_accuracy_threshold | 243.7545 |
manhattan_f1 | 0.7056 |
manhattan_f1_threshold | 295.9595 |
manhattan_precision | 0.5901 |
manhattan_recall | 0.8773 |
manhattan_ap | 0.7072 |
euclidean_accuracy | 0.6591 |
euclidean_accuracy_threshold | 12.1418 |
euclidean_f1 | 0.7037 |
euclidean_f1_threshold | 14.1975 |
euclidean_precision | 0.5997 |
euclidean_recall | 0.8513 |
euclidean_ap | 0.7035 |
max_accuracy | 0.6591 |
max_accuracy_threshold | 243.7545 |
max_f1 | 0.7056 |
max_f1_threshold | 295.9595 |
max_precision | 0.6115 |
max_recall | 0.9144 |
max_ap | 0.7072 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7322 |
spearman_cosine | 0.7345 |
pearson_manhattan | 0.7537 |
spearman_manhattan | 0.7551 |
pearson_euclidean | 0.7468 |
spearman_euclidean | 0.7485 |
pearson_dot | 0.6143 |
spearman_dot | 0.61 |
pearson_max | 0.7537 |
spearman_max | 0.7551 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 67,190 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 4 tokens
- mean: 21.19 tokens
- max: 133 tokens
- min: 4 tokens
- mean: 11.77 tokens
- max: 49 tokens
- 0: 100.00%
- Samples:
sentence1 sentence2 label Without a placebo group, we still won't know if any of the treatments are better than nothing and therefore worth giving.
It is necessary to use a controlled method to ensure the treatments are worthwhile.
0
It was conducted in silence.
It was done silently.
0
oh Lewisville any decent food in your cafeteria up there
Is there any decent food in your cafeteria up there in Lewisville?
0
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1, "kl_temperature": 1 }
Evaluation Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1, "kl_temperature": 1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 42per_device_eval_batch_size
: 22learning_rate
: 3e-06weight_decay
: 1e-08num_train_epochs
: 2lr_scheduler_type
: cosinewarmup_ratio
: 0.5save_safetensors
: Falsefp16
: Truehub_model_id
: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmphub_strategy
: checkpointhub_private_repo
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 42per_device_eval_batch_size
: 22per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 3e-06weight_decay
: 1e-08adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.5warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmphub_strategy
: checkpointhub_private_repo
: Truehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | max_ap | spearman_cosine |
---|---|---|---|---|---|
0.1 | 160 | 4.6003 | 4.8299 | 0.6017 | - |
0.2 | 320 | 4.0659 | 4.3436 | 0.6168 | - |
0.3 | 480 | 3.4886 | 4.0840 | 0.6339 | - |
0.4 | 640 | 3.0592 | 3.6422 | 0.6611 | - |
0.5 | 800 | 2.5728 | 3.1927 | 0.6773 | - |
0.6 | 960 | 2.184 | 2.8322 | 0.6893 | - |
0.7 | 1120 | 1.8744 | 2.4892 | 0.6954 | - |
0.8 | 1280 | 1.757 | 2.4453 | 0.7002 | - |
0.9 | 1440 | 1.5872 | 2.2565 | 0.7010 | - |
1.0 | 1600 | 1.446 | 2.1391 | 0.7046 | - |
1.1 | 1760 | 1.3892 | 2.1236 | 0.7058 | - |
1.2 | 1920 | 1.2567 | 1.9738 | 0.7053 | - |
1.3 | 2080 | 1.2233 | 1.8925 | 0.7063 | - |
1.4 | 2240 | 1.1954 | 1.8392 | 0.7075 | - |
1.5 | 2400 | 1.1395 | 1.9081 | 0.7065 | - |
1.6 | 2560 | 1.1211 | 1.8080 | 0.7074 | - |
1.7 | 2720 | 1.0825 | 1.8408 | 0.7073 | - |
1.8 | 2880 | 1.1358 | 1.7363 | 0.7073 | - |
1.9 | 3040 | 1.0628 | 1.8936 | 0.7072 | - |
2.0 | 3200 | 1.1412 | 1.7846 | 0.7072 | - |
None | 0 | - | 3.0121 | 0.7072 | 0.7345 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2
Base model
microsoft/deberta-v3-smallDataset used to train bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2
Evaluation results
- Cosine Accuracy on Unknownself-reported0.658
- Cosine Accuracy Threshold on Unknownself-reported0.677
- Cosine F1 on Unknownself-reported0.705
- Cosine F1 Threshold on Unknownself-reported0.602
- Cosine Precision on Unknownself-reported0.612
- Cosine Recall on Unknownself-reported0.832
- Cosine Ap on Unknownself-reported0.700
- Dot Accuracy on Unknownself-reported0.627
- Dot Accuracy Threshold on Unknownself-reported163.251
- Dot F1 on Unknownself-reported0.698