See axolotl config
axolotl version: 0.4.0
base_model: bofenghuang/vigogne-2-7b-instruct
base_model_config: bofenghuang/vigogne-2-7b-instruct
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: bobyres/LabelV01
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: "finetune_labelisation_v011"
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model: "checkpoint"
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 0.05
eval_table_size:
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
qlora-out
This model is a fine-tuned version of bofenghuang/vigogne-2-7b-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6592
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0134 | 0.03 | 1 | 1.0981 |
0.972 | 0.15 | 6 | 1.0736 |
0.7982 | 0.31 | 12 | 0.8548 |
0.6944 | 0.46 | 18 | 0.7151 |
0.6808 | 0.62 | 24 | 0.6943 |
0.6763 | 0.77 | 30 | 0.6821 |
0.67 | 0.92 | 36 | 0.6764 |
0.6424 | 1.08 | 42 | 0.6730 |
0.6552 | 1.23 | 48 | 0.6780 |
0.6527 | 1.38 | 54 | 0.6690 |
0.6624 | 1.54 | 60 | 0.6632 |
0.6228 | 1.69 | 66 | 0.6625 |
0.6447 | 1.85 | 72 | 0.6617 |
0.6409 | 2.0 | 78 | 0.6599 |
0.6356 | 2.15 | 84 | 0.6589 |
0.648 | 2.31 | 90 | 0.6584 |
0.6254 | 2.46 | 96 | 0.6593 |
0.6167 | 2.62 | 102 | 0.6596 |
0.6451 | 2.77 | 108 | 0.6590 |
0.6144 | 2.92 | 114 | 0.6592 |
Framework versions
- PEFT 0.11.0
- Transformers 4.39.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.17.1
- Tokenizers 0.15.0
- Downloads last month
- 6
Model tree for bobyres/mistral_label
Base model
bofenghuang/vigogne-2-7b-instruct