albert-small-kor-cross-encoder-v1
- albert-small-kor-v1 ๋ชจ๋ธ์ ํ๋ จ์์ผ cross-encoder๋ก ํ์ธํ๋ํ ๋ชจ๋ธ
- This model was trained using SentenceTransformers Cross-Encoder class.
Training
sts(10)-nli(3)-sts(10)-nli(3)-sts(10) ํ๋ จ ์ํด (distil ํ๋ จ ์์)
STS : seed=111,epoch=10, lr=1e-4, eps=1e-6, warm_step=10%, max_seq_len=128, train_batch=128(small ๋ชจ๋ธ=32) (albert 13m/7G) ํ๋ จ์ฝ๋
NLI ํ๋ จ : seed=111,epoch=3, lr=3e-5, eps=1e-8, warm_step=10%, max_seq_len=128, train_batch=64, eval_bath=64(albert 2h/7G) ํ๋ จ์ฝ๋
๋ชจ๋ธ korsts klue-sts glue(stsb) stsb_multi_mt(en) albert-small-kor-cross-encoder-v1 0.8455 0.8526 0.8513 0.7976 klue-cross-encoder-v1 0.8262 0.8833 0.8512 0.7889 kpf-cross-encoder-v1 0.8799 0.9133 0.8626 0.8027
Usage and Performance
Pre-trained models can be used like this:
from sentence_transformers import CrossEncoder
model = CrossEncoder('bongsoo/albert-small-kor-cross-encoder-v1')
scores = model.predict([('์ค๋ ๋ ์จ๊ฐ ์ข๋ค', '์ค๋ ๋ฑ์ฐ์ ํ๋ค'), ('์ค๋ ๋ ์จ๊ฐ ํ๋ฆฌ๋ค', '์ค๋ ๋น๊ฐ ๋ด๋ฆฐ๋ค')])
print(scores)
[0.45417202 0.6294121 ]
The model will predict scores for the pairs ('Sentence 1', 'Sentence 2')
and ('Sentence 3', 'Sentence 4')
.
You can use this model also without sentence_transformers and by just using Transformers AutoModel
class
- Downloads last month
- 11,126
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.