File size: 2,109 Bytes
4b34e9c 508b80e 4b34e9c 508b80e cc37146 508b80e 94f7820 82ae785 76466c6 c6ea538 54d83ed c6ea538 cc37146 fb4f7c7 54d83ed fb4f7c7 54d83ed cc37146 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
---
license: apache-2.0
language:
- ko
---
# albert-small-kor-cross-encoder-v1
- albert-small-kor-v1 ๋ชจ๋ธ์ ํ๋ จ์์ผ cross-encoder๋ก ํ์ธํ๋ํ ๋ชจ๋ธ
- This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
# Training
- sts(10)-nli(3)-sts(10)-nli(3)-sts(10) ํ๋ จ ์ํด (**distil ํ๋ จ ์์**)
- STS : seed=111,epoch=10, lr=1e-4, eps=1e-6, warm_step=10%, max_seq_len=128, train_batch=128(small ๋ชจ๋ธ=32) (albert 13m/7G) [ํ๋ จ์ฝ๋](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-corossencoder-train-nli.ipynb)
- NLI ํ๋ จ : seed=111,epoch=3, lr=3e-5, eps=1e-8, warm_step=10%, max_seq_len=128, train_batch=64, eval_bath=64(albert 2h/7G) [ํ๋ จ์ฝ๋](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-corossencoder-train-sts.ipynb)
- [ํ๊ฐ์ฝ๋](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-crossencoder-test3.ipynb),[ํ
์คํธ์ฝ๋](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-crossencoder-test.ipynb)
-
|๋ชจ๋ธ |korsts|klue-sts|glue(stsb)|stsb_multi_mt(en)|
|:--------|------:|--------:|--------------:|------------:|
|**albert-small-kor-cross-encoder-v1** |0.8455 |0.8526 |0.8513 |0.7976|
|klue-cross-encoder-v1 |0.8262 |0.8833 |0.8512 |0.7889|
|kpf-cross-encoder-v1 |0.8799 |0.9133 |0.8626 |0.8027|
## Usage and Performance
Pre-trained models can be used like this:
```
from sentence_transformers import CrossEncoder
model = CrossEncoder('bongsoo/albert-small-kor-cross-encoder-v1')
scores = model.predict([('์ค๋ ๋ ์จ๊ฐ ์ข๋ค', '์ค๋ ๋ฑ์ฐ์ ํ๋ค'), ('์ค๋ ๋ ์จ๊ฐ ํ๋ฆฌ๋ค', '์ค๋ ๋น๊ฐ ๋ด๋ฆฐ๋ค')])
print(scores)
```
```
[0.45417202 0.6294121 ]
```
The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class |